Micromachines (Basel)
April 2023
An experiment was performed to calibrate the capability of a tactile sensor, which is based on gallium nitride (GaN) nanopillars, to measure the absolute magnitude and direction of an applied shear force without the need for any post-processing of data. The force's magnitude was deduced from monitoring the nanopillars' light emission intensity. Calibration of the tactile sensor used a commercial force/torque (F/T) sensor.
View Article and Find Full Text PDFAn ultrathin tactile sensor with directional sensitivity and capable of mapping at a high spatial resolution is proposed and demonstrated. Each sensor node consists of two gallium nitride (GaN) nanopillar light-emitting diodes. Shear stress applied on the nanopillars causes the electrons and holes to separate in the radial direction and reduces the light intensity emitted from the nanopillars.
View Article and Find Full Text PDF