Publications by authors named "Nathan Dunkin"

With increasing interest in peracetic acid (PAA) as a disinfectant in water treatment processes, this study determined PAA treatment effects on human noroviruses (hNoVs) genotype I (GI) and genotype II (GII) as well as effects on bacteriophage MS2 and murine norovirus (MNV) in relation to pH. Across all pH conditions, PAA achieved between 0.2 and 2.

View Article and Find Full Text PDF

Peracetic acid (PAA) is a strong oxidant/bactericide that has been applied in various industries (e.g., food processing, pharmaceuticals, medical device sterilization, etc.

View Article and Find Full Text PDF

Noroviruses cause significant global health burdens and waterborne transmission is a known exposure pathway. Chlorination is the most common method of disinfection for water and wastewater worldwide. The purpose of this study was to investigate the underlying causes for discrepancies in human norovirus (hNoV) resistance to free chlorine that have been previously published, and to assess hNoV GI and GII persistence during disinfection of municipal secondary wastewater (WW) effluent.

View Article and Find Full Text PDF

The objective of this study was to characterize human norovirus (hNoV) GI and GII reductions during disinfection by peracetic acid (PAA) and monochloramine in secondary wastewater (WW) and phosphate buffer (PB) as assessed by reverse transcription-qPCR (RT-qPCR). Infectivity and RT-qPCR reductions are also presented for surrogate viruses murine norovirus (MNV) and bacteriophage MS2 under identical experimental conditions to aid in interpretation of hNoV molecular data. In WW, RT-qPCR reductions were less than 0.

View Article and Find Full Text PDF

Human noroviruses (hNoVs) are a known public health concern associated with the consumption of leafy green vegetables. While a number of studies have investigated pathogen reduction on the surfaces of leafy greens during the postharvest washing process, there remains a paucity of data on the level of treatment needed to inactivate viruses in the wash water, which is critical for preventing cross-contamination. The objective of this study was to quantify the susceptibility of hNoV genotype I (GI), hNoV GII, murine norovirus (MNV), and bacteriophage MS2 to free chlorine in whole leaf, chopped romaine, and shredded iceberg lettuce industrial leafy green wash waters, each sampled three times over a 4-month period.

View Article and Find Full Text PDF

One key assumption impacting data quality in viral inactivation studies is that reduction estimates are not altered by the virus seeding process. However, seeding viruses often involves the inadvertent addition of co-constituents such as cell culture components or additives used during preparation steps which can impact viral reduction estimates by inducing non-representative oxidant demand in disinfection studies and fouling in membrane assessments. The objective of this study was therefore to characterize a mammalian norovirus surrogate, murine norovirus (MNV), and bacteriophage MS2 at sequential stages of viral purification and to quantify their potential contribution to artificial oxidant demand and non-representative membrane fouling.

View Article and Find Full Text PDF

Chlorination has long been used for disinfection of municipal wastewater (MWW) effluent while the use peracetic acid (PAA) has been proposed more recently in the United States. Previous work has demonstrated the bactericidal effectiveness of PAA and monochloramine in wastewater, but limited information is available for viruses, especially ones of mammalian origin (e.g.

View Article and Find Full Text PDF