Publications by authors named "Nathan D Kirchhofer"

Light-induced microbial electron transfer has potential for efficient production of value-added chemicals, biofuels and biodegradable materials owing to diversified metabolic pathways. However, most microbes lack photoactive proteins and require synthetic photosensitizers that suffer from photocorrosion, photodegradation, cytotoxicity, and generation of photoexcited radicals that are harmful to cells, thus severely limiting the catalytic performance. Therefore, there is a pressing need for biocompatible photoconductive materials for efficient electronic interface between microbes and electrodes.

View Article and Find Full Text PDF

Nature utilizes the available resources to construct lightweight, strong and tough materials under constrained environmental conditions. The impact surface of the fast-striking dactyl club from the mantis shrimp is an example of one such composite material; the shrimp has evolved the capability to localize damage and avoid catastrophic failure from high-speed collisions during its feeding activities. Here we report that the dactyl club of mantis shrimps contains an impact-resistant coating composed of densely packed (about 88 per cent by volume) ~65-nm bicontinuous nanoparticles of hydroxyapatite integrated within an organic matrix.

View Article and Find Full Text PDF

We probe anaerobic respiration of bacteria in the presence of conjugated polyelectrolytes (CPEs). Three different CPEs were used to probe how structural variations impact biocurrent generation from Shewanella oneidensis MR-1. For the self-doped anionic CPE only, absorption spectroscopy shows that the addition of S.

View Article and Find Full Text PDF

Some microbial biofilms are electrically conductive. However, the mechanism of electron transport remains unclear. Here, we show that μm-scale long-distance electron transport through electrode-grown Geobacter sulfurreducens biofilms occurs via redox conduction, as determined by electrical measurements performed under varied hydration states and temperatures.

View Article and Find Full Text PDF

Shewanella oneidensis MR-1 was cultivated on lactate with poised graphite electrode acceptors (E = +0.2 V vs. Ag/AgCl) in order to explore the basis for sustained increases in anodic current output following the addition of the lipid-intercalating conjugated oligoelectrolyte (COE), 4,4'-bis(4'-(N,N-bis(6''-(N,N,N-trimethylammonium)hexyl)amino)-styryl)stilbene tetraiodide (DSSN+).

View Article and Find Full Text PDF

It is important to tailor biotic-abiotic interfaces in order to maximize the utility of bioelectronic devices such as microbial fuel cells (MFCs), electrochemical sensors and bioelectrosynthetic systems. The efficiency of electron-equivalent extraction (or injection) across such biotic-abiotic interfaces is dependent on the choice of the microbe and the conductive electrode material. In this contribution, we show that spontaneous intercalation of a conjugated oligoelectrolyte, namely 4,4'-bis(4'-(N,N-bis(6''-(N,N,N-trimethylammonium)hexyl)amino)-styryl)stilbene tetraiodide (DSSN+), into the membranes of Escherichia coli leads to an increase in current generation in MFCs containing carbon-based electrodes.

View Article and Find Full Text PDF

A series of conjugated oligoelectrolytes with structural variations is used to stain E. coli. By taking advantage of a high-throughput screening platform that incorporates gold anodes, it is found that MFCs with COE-modified E.

View Article and Find Full Text PDF