Publications by authors named "Nathan D Donahue"

Cancer nanomedicines predominately rely on transport processes controlled by tumor-associated endothelial cells to deliver therapeutic and diagnostic payloads into solid tumors. While the dominant role of this class of endothelial cells for nanoparticle transport and tumor delivery is established in animal models, the translational potential in human cells needs exploration. Using primary human breast cancer as a model, the differential interactions of normal and tumor-associated endothelial cells with clinically relevant nanomedicine formulations are explored and quantified.

View Article and Find Full Text PDF

Super-resolution microscopy can transform our understanding of nanoparticle-cell interactions. Here, we established a super-resolution imaging technology to visualize nanoparticle distributions inside mammalian cells. The cells were exposed to metallic nanoparticles and then embedded within different swellable hydrogels to enable quantitative three-dimensional (3D) imaging approaching electron-microscopy-like resolution using a standard light microscope.

View Article and Find Full Text PDF

We used heparosan (HEP) polysaccharides for controlling nanoparticle delivery to innate immune cells. Our results show that HEP-coated nanoparticles were endocytosed in a time-dependent manner by innate immune cells via both clathrin-mediated and macropinocytosis pathways. Upon endocytosis, we observed HEP-coated nanoparticles in intracellular vesicles and the cytoplasm, demonstrating the potential for nanoparticle escape from intracellular vesicles.

View Article and Find Full Text PDF

We report on the absolute quantification of nanoparticle interactions with individual human B cells using quadrupole-based inductively coupled plasma mass spectrometry (ICP-MS). This method enables the quantification of nanoparticle-cell interactions at single nanoparticle and single cell levels. We demonstrate the efficient and accurate detection of individually suspended B cells and found an ∼100-fold higher association of colloidally stable positively charged nanoparticles with single B cells than neutrally charged nanoparticles.

View Article and Find Full Text PDF

Nanoparticle modification with poly(ethylene glycol) (PEG) is a widely used surface engineering strategy in nanomedicine. However, since the artificial PEG polymer may adversely impact nanomedicine safety and efficacy, alternative surface modifications are needed. Here, we explored the "self" polysaccharide heparosan (HEP) to prepare colloidally stable HEP-coated nanoparticles, including gold and silver nanoparticles and liposomes.

View Article and Find Full Text PDF

To control a nanoparticle's chemical composition and thus function, researchers require readily accessible and economical characterization methods that provide quantitative analysis of individual nanoparticles with high throughput. Here, we established dual analyte single-particle inductively coupled plasma quadrupole mass spectrometry to quantify the chemical composition and reaction kinetics of individual colloidal nanoparticles. We determined the individual bimetallic nanoparticle mass and chemical composition changes during two different chemical reactions: (i) nanoparticle etching and (ii) element deposition on nanoparticles at a rate of 300+ nanoparticles/min.

View Article and Find Full Text PDF

There is growing evidence indicating the need to combine the rehabilitation and regenerative medicine fields to maximize functional recovery after spinal cord injury (SCI), but there are limited methods to synergistically combine the fields. Conductive biomaterials may enable synergistic combination of biomaterials with electric stimulation (ES), which may enable direct ES of neurons to enhance axon regeneration and reorganization for better functional recovery; however, there are three major challenges in developing conductive biomaterials: (1) low conductivity of conductive composites, (2) many conductive components are cytotoxic, and (3) many conductive biomaterials are pre-formed scaffolds and are not injectable. Pre-formed, noninjectable scaffolds may hinder clinical translation in a surgical context for the most common contusion-type of SCI.

View Article and Find Full Text PDF

Biological interactions, toxicity, and environmental fate of engineered nanoparticles are affected by colloidal stability and aggregation. To assess nanoparticle aggregation, analytical methods are needed that allow quantification of individual nanoparticle aggregates. However, most techniques used for nanoparticle aggregation analysis are limited to ensemble measurements or require harsh sample preparation that may introduce artifacts.

View Article and Find Full Text PDF

Nanoparticle-based therapeutics and diagnostics are commonly referred to as nanomedicine and may significantly impact the future of healthcare. However, the clinical translation of these technologies is challenging. One of these challenges is the efficient delivery of nanoparticles to specific cell populations and subcellular targets in the body to elicit desired biological and therapeutic responses.

View Article and Find Full Text PDF