While many 3D structures of cation-coupled transporters have been determined, the mechanistic details governing the obligatory coupling and functional regulations still remain elusive. The bacterial melibiose transporter (MelB) is a prototype of major facilitator superfamily transporters. With a conformation-selective nanobody, we determined a low-sugar affinity inward-facing Na-bound cryoEM structure.
View Article and Find Full Text PDFWhile many 3D structures of cation-coupled transporters have been determined, the mechanistic details governing the obligatory coupling and functional regulations still remain elusive. The bacterial melibiose transporter (MelB) is a prototype of the Na-coupled major facilitator superfamily transporters. With a conformational nanobody (Nb), we determined a low-sugar affinity inward-facing Na-bound cryoEM structure.
View Article and Find Full Text PDFNext-generation DNA sequencing and metagenomic analysis provide powerful tools for the environmentally friendly design of nanoparticles. Herein we demonstrate this approach using a model community of environmental microbes (that is, wastewater-activated sludge) dosed with gold nanoparticles of varying surface coatings and morphologies. Metagenomic analysis was highly sensitive in detecting the microbial community response to gold nanospheres and nanorods with either cetyltrimethylammonium bromide or polyacrylic acid surface coatings.
View Article and Find Full Text PDFThere is interest in the controlled aggregation of gold nanorods (GNRs) for the production of extended nanoassemblies. Prior studies have relied upon chemical modification of the GNR surface to achieve a desired final aggregate structure. Herein we illustrate that control of electrolyte composition can facilitate end-to-end assembly of cetyltrimethylammonium-bromide-coated (CTAB) GNRs.
View Article and Find Full Text PDFSince the development of simple, aqueous protocols for the synthesis of anisotropic metal nanoparticles, research into many promising, valuable applications of gold nanorods has grown considerably, but a number of challenges remain, including gold-particle yield, robustness to minor impurities, and precise control of gold nanorod surface chemistry. Herein we present the results of a composite fractional factorial series of experiments designed to screen seven additional potential avenues of control and to understand the seed-mediated silver-assisted synthesis of gold nanorods. These synthesis variables are the amount of sodium borohydride used and the rate of stirring when producing seed nanoparticles, the age of and the amount of seeds added, the reaction temperature, the amounts of silver nitrate and ascorbic acid added, and the age of the reduced growth solution before seed nanoparticles are added to initiate rod formation.
View Article and Find Full Text PDFCorrection for 'In solution SERS sensing using mesoporous silica-coated gold nanorods' by Zhe Gao, et al., Analyst, 2016, 141, 5088-5095.
View Article and Find Full Text PDFGold nanorods have garnered a great deal of scientific interest because of their unique optical properties, and they have the potential to greatly impact many areas of science and technology. Understanding the structure and chemical makeup of their surfaces as well as how to tailor them is of paramount importance in the development of their successful applications. This Feature Article reviews the current understanding of the surface chemistry of as-synthesized gold nanorods, methods of tailoring the surface chemistry of gold nanorods with various inorganic and organic coatings/ligands, and the techniques employed to characterize ligands on the surface of gold nanorods as well as the associated measurement challenges.
View Article and Find Full Text PDFMesoporous silica-coated gold nanorods (AuNR@MS) act as a colloidally stable Raman sensing platform with a built-in analyte size cutoff. Herein, these core-shell plasmonic nanostructures were presented with a range of thiolated Raman-active molecules to probe the limits of this platform for SERS sensing. The experimental results show generally, that the transport of molecules through the mesopores is highly dependent on the size of the molecule and specifically, that AuNR@MS with pores of ∼4 nm diameter are able to sense analytes with molecular dimensions smaller than 1.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2016
Ultrafast transient absorption experiments and molecular dynamics simulations are utilized to investigate the thermal transport between aqueous solutions and cetyltrimethylammonium bromide (CTAB)- or polyethylene glycol (PEG)-functionalized gold nanorods (GNRs). The transient absorption measurement data are interpreted with a multiscale heat diffusion model, which incorporates the interfacial thermal conductances predicted by molecular dynamics. According to our observations, the effective thermal conductance of the GNR/PEG/water system is higher than that of the GNR/CTAB/water system with a surfactant layer of the same length.
View Article and Find Full Text PDFAnisotropic nanoparticles are powerful building blocks for materials engineering. Unusual properties emerge with added anisotropy-often to an extraordinary degree-enabling countless new applications. For bottom-up assembly, anisotropy is crucial for programmability; isotropic particles lack directional interactions and can self-assemble only by basic packing rules.
View Article and Find Full Text PDFMicrofluidic sensing platforms facilitate parallel, low sample volume detection using various optical signal transduction mechanisms. Herein, we introduce a simple mixing microfluidic device, enabling serial dilution of introduced analyte solution that terminates in five discrete sensing elements. We demonstrate the utility of this device with on-chip fluorescence and surface-enhanced Raman scattering (SERS) detection of analytes, and we demonstrate device use both when combined with a traditional inflexible SERS substrate and with SERS-active nanoparticles that are directly incorporated into microfluidic channels to create a flexible SERS platform.
View Article and Find Full Text PDFMicrosc Microanal
December 2013
Direct imaging of nanoscale objects suspended in liquid media can be accomplished using cryogenic transmission electron microscopy (cryo-TEM). Cryo-TEM has been used with particular success in microbiology and other biological fields. Samples are prepared by plunging a thin film of sample into an appropriate cryogen, which essentially produces a snapshot of the suspended objects in their liquid medium.
View Article and Find Full Text PDFOriented aggregation is a special case of aggregation in which nanocrystals self-assemble and form new secondary single crystals. This process has been suggested to proceed via an intermediate state known as the mesocrystal, in which the nanocrystals have parallel crystallographic alignment but are spatially separated. We present the first direct observations of mesocrystals with size and shape similar to product oriented aggregates by employing cryo-TEM to directly image the particles in aqueous suspension.
View Article and Find Full Text PDF