Phosphite represents a reduced form of phosphate that belongs to a class of crop growth-promoting chemicals termed biostimulants. Previous research has shown that phosphite application can enhance root growth, but its underlying mechanism, especially during environmental stresses, remains elusive. To uncover this, we undertook a series of morphological and physiological analyses under nutrient, water and heat stresses following a foliar application in wheat.
View Article and Find Full Text PDFThe first signaling peptide discovered and purified was insulin in 1921. However, it was not until 1991 that the first peptide signal, systemin, was discovered in plants. Since the discovery of systemin, peptides have emerged as a potent and diverse class of signaling molecules in plant systems.
View Article and Find Full Text PDFReceptor kinases play important roles in plant growth and development, but only few of them have been functionally characterized in depth. Over the past decade CRINKLY 4 (CR4)-related research has peaked as a result of a newly discovered role of ARABIDOPSIS CR4 (ACR4) in the root. Here, we comprehensively review the available (A)CR4 literature and describe its role in embryo, seed, shoot, and root development, but we also flag an unexpected role in plant defence.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2016
In plants, the generation of new cell types and tissues depends on coordinated and oriented formative cell divisions. The plasma membrane-localized receptor kinase ARABIDOPSIS CRINKLY 4 (ACR4) is part of a mechanism controlling formative cell divisions in the Arabidopsis root. Despite its important role in plant development, very little is known about the molecular mechanism with which ACR4 is affiliated and its network of interactions.
View Article and Find Full Text PDFOptimal development of root architecture is vital to the structure and nutrient absorption capabilities of any plant. We recently demonstrated that AtCLE26 regulates A. thaliana root architecture development, possibly by altering auxin distribution to the root apical meristem via inhibition of protophloem development.
View Article and Find Full Text PDFCell-cell communication plays a crucial role in plant growth and development and relies to a large extent on peptide ligand-receptor kinase signaling mechanisms. The CRINKLY4 (CR4) family of receptor-like kinases is involved in a wide range of developmental processes in plants, including mediating columella stem cell identity and differentiation in the Arabidopsis thaliana root tip. Members of the CR4 family contain a signal peptide, an extracellular part, a single-pass transmembrane helix and an intracellular cytoplasmic protein kinase domain.
View Article and Find Full Text PDFPlant roots are important for a wide range of processes, including nutrient and water uptake, anchoring and mechanical support, storage functions, and as the major interface with the soil environment. Several small signalling peptides and receptor kinases have been shown to affect primary root growth, but very little is known about their role in lateral root development. In this context, the CLE family, a group of small signalling peptides that has been shown to affect a wide range of developmental processes, were the focus of this study.
View Article and Find Full Text PDFIn the Arabidopsis thaliana genome, over 1000 putative genes encoding small, presumably secreted, signalling peptides can be recognized. However, a major obstacle in identifying the function of genes encoding small signalling peptides is the limited number of available loss-of-function mutants. To overcome this, a promising new tool, antagonistic peptide technology, was recently developed.
View Article and Find Full Text PDFClassical and recently found phytohormones play an important role in plant growth and development, but plants additionally control these processes through small signalling peptides. Over 1000 potential small signalling peptide sequences are present in the Arabidopsis genome. However, to date, a mere handful of small signalling peptides have been functionally characterized and few have been linked to a receptor.
View Article and Find Full Text PDFLocalization of DEF6 (SLAT/IBP), a Rho-family guanine nucleotide exchange factor, to the center of the immune synapse is dependent upon ITK, a Tec-family kinase that regulates the spatiotemporal organization of components of T cell signaling pathways and Cdc42-dependent actin polymerization. Here we demonstrate that ITK both interacts with DEF6 and phosphorylates DEF6 at tyrosine residues Tyr(210) and Tyr(222). Expression of a GFP-tagged Y210E-Y222E phosphomimic resulted in the formation of DEF6 cytoplasmic granules that co-localized with decapping enzyme 1 (DCP1), a marker of P-bodies; sites of mRNA degradation.
View Article and Find Full Text PDF