Publications by authors named "Nathan Bossa"

Lessons learned, methodologies, and application of tools that have been developed within the context of research on the environmental impacts, health, and safety of nanomaterials (nano-EHS) provide a solid foundation for research on nano/microplastics. In this communication, we summarize key discoveries obtained through major research efforts over the last two decades in the area of nano-EHS that are applicable for the study of micro- and nano-plastics (referred to here more generally as particulate plastics). We focus on how non-equilibrium particle transport processes affect: 1) bio-physico-chemical mechanisms of particle toxicity and determining dose-response relationships; 2) the potential for biouptake, bioaccumulation, translocation, trophic transfer and intergenerational effects of particulate contaminants; 3) extrapolations from laboratory experiments to complex systems and the impact of environmental transformations; 4) the formulation of functional assays as a basis for predicting the impacts of particulate contaminants in complex environments; 5) the relative importance of incidental particles compared with engineered particles and, 6) experience with data platforms, curation, and experimental design.

View Article and Find Full Text PDF

In 2020, the European Commission published a regulation that states all producers of white paints containing titanium dioxide (TiO) must provide a warning label on their products. Exposure during the production and application of products containing TiO can be harmful, and therefore these products must be labeled as "may cause cancer." The paint industry is a major user of TiO pigment.

View Article and Find Full Text PDF

To ensure the safe use of materials, one must assess the identity and quantity of exposure. Solid materials, such as plastics, metals, coatings and cements, degrade to some extent during their life cycle, and releases can occur during manufacturing, use and end-of-life. Releases (e.

View Article and Find Full Text PDF

Nanoforms (NFs) of a substance may be distinguished from one another through differences in their physicochemical properties. When registering nanoforms of a substance for assessment under the EU REACH framework, five basic descriptors are required for their identification: composition, surface chemistry, size, specific surface area and shape. To make the risk assessment of similar NFs efficient, a number of grouping frameworks have been proposed, which often require assessment of similarity on individual physicochemical properties as part of the group justification.

View Article and Find Full Text PDF
Article Synopsis
  • Accidental burning of nano-enabled products (NEPs), like certain paints and polymer composites, can release harmful nano-sized aerosols into the environment, impacting human health.
  • The study examined the chemical compositions and aerosol emissions from real-life NEPs and found that the physical and chemical properties of the aerosols were altered compared to the original nanomaterials (NMs).
  • The amount and size of these aerosols varied significantly based on the type of NEP combusted, providing insights for assessing risks associated with inhalation and environmental exposure.
View Article and Find Full Text PDF

Before placing a new nanoform (NF) on the market, its potential adverse effects must be evaluated. This may e.g.

View Article and Find Full Text PDF
Article Synopsis
  • Microplastics (MPs) are a growing environmental concern, primarily originating from the breakdown of plastic products through various stresses and degradation processes.
  • A new method and custom machine have been developed to measure the release rates of MPs during mechanical stress throughout a plastic's life cycle, including various testing for different types of 3D printed polymers.
  • Results show that the abrasion rates of these plastics do not correlate with their mechanical properties, with high-impact polystyrene generating the most MPs and thermoplastic polyurethane producing the least, providing crucial data to inform pollution reduction strategies.
View Article and Find Full Text PDF

Manufactured nanomaterials (MNMs) are incorporated as "nanofillers" into consumer products to enhance properties of interest. Multiwalled carbon nanotubes (MWCNTs) are known for their unique properties and have many applications in polymers. However, the release of MWCNTs during the nanoenabled product life cycle is concerning.

View Article and Find Full Text PDF

Chemoinformatics has developed efficient ways of representing chemical structures for small molecules as simple text strings, simplified molecular-input line-entry system (SMILES) and the IUPAC International Chemical Identifier (InChI), which are machine-readable. In particular, InChIs have been extended to encode formalized representations of mixtures and reactions, and work is ongoing to represent polymers and other macromolecules in this way. The next frontier is encoding the multi-component structures of nanomaterials (NMs) in a machine-readable format to enable linking of datasets for nanoinformatics and regulatory applications.

View Article and Find Full Text PDF

Reliable predictions of the environmental fate and risk of engineered nanomaterials (ENMs) require a better understanding of ENM reactivity in complex, biologically active systems for chronic low-concentration exposure scenarios. Here, simulated freshwater wetland mesocosms were dosed with ENMs to assess how their reactivity and seasonal changes in environmental parameters influence ENM fate in aquatic systems. Copper-based ENMs (Kocide), known to dissolve in water, and gold nanoparticles (AuNPs), stable against dissolution in the absence of specific ligands, were added weekly to mesocosm waters for 9 months.

View Article and Find Full Text PDF

The application of nanoscale zerovalent iron (nano-ZVI) particles for groundwater remediation has spurred research into the influence of the collector heterogeneity on the nano-ZVI mobility. The chemical heterogeneity of surfaces within aquifer media affects their surface charge distribution and their affinity for nano-ZVI. The groundwater chemistry affects the properties of both aquifer surfaces and the nano-ZVI particles.

View Article and Find Full Text PDF

Ferroptosis is a specialized iron-dependent cell death that is associated with lethal lipid peroxidation. Modulation of ferroptosis may have therapeutic potential since it has been implicated in various human diseases as well as potential antitumor activities. However, much remains unknown about the underlying mechanisms and genetic determinants of ferroptosis.

View Article and Find Full Text PDF

Here, we present a model for the prediction of nanoparticle fate in aquatic environments, parametrized using functional assays that take into account conditions of the environmental media and nanoparticle properties. The model was used to explore scenarios for five nanomaterials in a freshwater wetland setting and compared with experimental results obtained in mesocosm studies. Material characteristics used in the model were size, density, dissolution rate constants, and surface attachment efficiencies.

View Article and Find Full Text PDF

To achieve greater separation performance and antifouling properties in a thin-film composite (TFC) nanofiltration membrane, cellulose nanocrystals (CNCs) were incorporated into the polyamide layer of a TFC membrane for the first time. The results of Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy (XPS) confirmed the successful formation of the CNC-polyamide composite layer. Surface characterization results revealed differences in the morphologies of the CNC-TFC membranes compared with a control membrane (CNC-TFC-0).

View Article and Find Full Text PDF

Predicting nanoparticle fate in aquatic environments requires mimicking of ecosystem complexity to observe the geochemical processes affecting their behaviour. Here, 12 nm Au nanoparticles were added weekly to large-scale freshwater wetland mesocosms. After six months, ~70% of Au was associated with the macrophyte Egeria densa, where, despite the thermodynamic stability of Au in water, the pristine Au nanoparticles were fully oxidized and complexed to cyanide, hydroxyls or thiol ligands.

View Article and Find Full Text PDF

Trace metals associated with nanoparticles are known to possess reactivities that are different from their larger-size counterparts. However, the relative importance of small relative to large particles for the overall distribution and biouptake of these metals is not as well studied in complex environmental systems. Here, we have examined differences in the long term fate and transport of ceria (CeO) nanoparticles of two different sizes (3.

View Article and Find Full Text PDF

The release of CeO-bearing residues during the weathering of an acrylic stain enriched with CeO nanomaterial designed for wood protection (Nanobyk brand additive) was studied under two different scenarios: (i) a standard 12-weeks weathering protocol in climate chamber, that combined condensation, water spraying and UV-visible irradiation and (ii) an alternative accelerated 2-weeks leaching batch assay relying on the same weathering factors (water and UV), but with a higher intensity of radiation and immersion phases. Similar Ce released amounts were evidenced for both scenarios following two phases: one related to the removal of loosely bound material with a relatively limited release, and the other resulting from the degradation of the stain, where major release occurred. A non-linear evolution of the release with the UV dose was evidenced for the second phase.

View Article and Find Full Text PDF

Zero-valent iron nanoparticles (nano-ZVIs) have been widely studied for remediation of groundwater and other environmental matrices. Nano-ZVI particle mobility and reactivity are still the main impediments in achieving efficient groundwater remediation. Compared to the nano-ZVI "coating" strategy, nano-ZVI stabilization on supporting material allows direct contact with the contaminant, reduces the electron path from the nano-ZVI to the target contaminant and increases nano-ZVI reactivity.

View Article and Find Full Text PDF

Direct contact membrane distillation (DCMD) is an emerging water treatment technology that has high salt rejection; however, its commercialization potential for applications such as seawater desalination or industrial wastewater reuse may be limited by low rejection of volatile and semivolatile contaminants. In this manuscript, a contaminant concentration (CC) model describing the transport of volatile and semivolatile contaminants for DCMD systems was developed and validated using data from the bench-scale DCMD treatment of synthetic wastewaters. The DCMD tests showed that the more volatile contaminants (methyl-tert-butyl ether, acetone, pentanone, butanol, and hexanol) accumulated in the permeate collection stream at greater concentrations than in the feed stream.

View Article and Find Full Text PDF

The increasing occurrence of tetrabromobisphenol A (TBBPA) in the environment is raising questions about its potential environmental health impacts as it has been shown to cause various deleterious effects in humans. The fact that the highest concentrations of TBBPA have been reported in wastewater sludge is concerning as effluent discharge and biosolids land application are likely a route by which TBBPA can be further disbursed to the environment. Our objectives in this study were to evaluate the effect of biochar (BC) and activated carbon (AC) in promoting the biodegradation of TBBPA, and characterize the response of anaerobic sludge microbial communities following amendments.

View Article and Find Full Text PDF

The affinity between nanoscale zerovalent iron (nano-ZVI) and mineral surfaces hinders its mobility, and hence its delivery into contaminated aquifers. We have tested the hypothesis that the attachment of poly(acrylic acid)-coated nano-ZVI (PAA-nano-ZVI) to mineral surfaces could be limited by coating such surfaces with sodium (Na) humate prior to PAA-nano-ZVI injection. Na humate was expected to form a coating over favorable sites for PAA-nano-ZVI attachment and hence reduce the affinity of PAA-nano-ZVI for the collector surfaces through electrosteric repulsion between the two interpenetrating charged polymers.

View Article and Find Full Text PDF

In this study, we assessed the transportability of zero valent iron nanoparticles (nano-Fe) coated with different organics (carboxy methyl cellulose (CMC), poly acrylic acid (PAA), and xanthan gum) in standard porous sand and in real aquifer sediments. Our results suggest that the organic surface coatings optimized for nano-Fe in porous sand media do not necessarily reflect the same transportability in real field aquifer sediment. Xanthan gum-coated nano-Fe showed highest transportability in standard porous sand, but the performance was much lower in real aquifer sediment, whereas the PAA-coated nano-Fe particle showed better transportability both in aquifer sediment and in porous sand media.

View Article and Find Full Text PDF

The inherent properties of hydrophilicity and mechanical strength of cellulose nanocrystals (CNCs) make them a possible alternative to carbon nanotubes (CNTs) that may present fewer objections to application water-treatment membranes. In this work, the hydrophilicity and mechanical properties of CNCs and CNTs nanocomposite poly(ether sulfone) (PES) membranes were characterized and compared. Membrane pore geometry was analyzed by scanning electron microscopy (SEM).

View Article and Find Full Text PDF

Nanomaterials are increasingly being used to improve the properties and functions of common building materials. A new type of self-cleaning cement incorporating TiO nanomaterials (TiO-NMs) with photocatalytic properties is now marketed. This promising cement might provide air pollution-reducing properties but its environmental impact must be validated.

View Article and Find Full Text PDF

The increasing use of strategies incorporating nanoscale zero valent iron (nZVI) for soil and groundwater in situ remediation is raising some concerns regarding the potential adverse effects nZVI could have on indigenous microbial communities and ecosystem functioning. This review provides an overview of the current literature pertaining to the impacts of nZVI applications on microbial communities. Toxicity studies suggest that cell membrane disruption and oxidative stress through the generation of Fe(2+) and reactive oxygen species by nZVI are the main mechanisms contributing to nZVI cytotoxicity.

View Article and Find Full Text PDF