Publications by authors named "Nathan Basisty"

Cells are subjected to dynamic mechanical environments which impart forces and induce cellular responses. In age-related conditions like pulmonary fibrosis, there is both an increase in tissue stiffness and an accumulation of senescent cells. While senescent cells produce a senescence-associated secretory phenotype (SASP), the impact of physical stimuli on both cellular senescence and the SASP is not well understood.

View Article and Find Full Text PDF

Cellular senescence increases with age and contributes to age-related declines and pathologies. We identified circulating biomarkers of senescence associated with diverse clinical traits in humans to facilitate future non-invasive assessment of individual senescence burden and efficacy testing of novel senotherapeutics. Using a novel nanoparticle-based proteomic workflow, we profiled the senescence-associated secretory phenotype (SASP) in monocytes and examined these proteins in plasma samples (N = 1060) from the Baltimore Longitudinal Study of Aging (BLSA).

View Article and Find Full Text PDF
Article Synopsis
  • Cellular senescence, once thought to only occur in tissue cultures, is now recognized as playing complex roles in various biological processes across multiple species, including humans.
  • Traditional understanding of senescent cells primarily comes from lab studies, but these cells are rare in actual tissues, and fully developed cells can also show signs of senescence.
  • The SenNet Biomarkers Working Group has created recommendations for identifying senescent cells in tissues, analyzing literature on markers in mice and humans, and discussing new methods for detection that will assist researchers in the field.
View Article and Find Full Text PDF

Cellular senescence, a hallmark of aging, results in a senescence-associated secretory phenotype (SASP) with an increased production of proinflammatory cytokines, growth factors, and proteases. Evidence from nonhuman models demonstrates that SASP contributes to tissue dysfunction and pathological effects of aging. However, there are relatively few human studies on the relationship between SASP and aging-related health outcomes.

View Article and Find Full Text PDF

Cellular senescence is a state of irreversible growth arrest with profound phenotypic changes, including the senescence-associated secretory phenotype (SASP). Senescent cell accumulation contributes to aging and many pathologies including chronic inflammation, type 2 diabetes, cancer, and neurodegeneration. Targeted removal of senescent cells in preclinical models promotes health and longevity, suggesting that the selective elimination of senescent cells is a promising therapeutic approach for mitigating a myriad of age-related pathologies in humans.

View Article and Find Full Text PDF

Senescent cells are beneficial for repairing acute tissue damage, but they are harmful when they accumulate in tissues, as occurs with advancing age. Senescence-associated extracellular vesicles (S-EVs) can mediate cell-to-cell communication and export intracellular content to the microenvironment of aging tissues. Here, we studied the uptake of EVs from senescent cells (S-EVs) and proliferating cells (P-EVs) and found that P-EVs were readily taken up by proliferating cells (fibroblasts and cervical cancer cells) while S-EVs were not.

View Article and Find Full Text PDF

Cardiovascular disease (CVD) is a leading cause of morbidity and mortality worldwide, and senescent cells have emerged as key contributors to its pathogenesis. Senescent cells exhibit cell cycle arrest and secrete a range of proinflammatory factors, termed the senescence-associated secretory phenotype (SASP), which promotes tissue dysfunction and exacerbates CVD progression. Omics technologies, specifically transcriptomics and proteomics, offer powerful tools to uncover and define the molecular signatures of senescent cells in cardiovascular tissue.

View Article and Find Full Text PDF

Changes in the transcriptomes of human tissues with advancing age are poorly cataloged. Here, we sought to identify the coding and long noncoding RNAs present in cultured primary skin fibroblasts collected from 82 healthy individuals across a wide age spectrum (22-89 years old) who participated in the GESTALT (Genetic and Epigenetic Signatures of Translational Aging Laboratory Testing) study of the National Institute on Aging, NIH. Using high-throughput RNA sequencing and a linear regression model, we identified 1437 coding RNAs (mRNAs) and 1177 linear and circular long noncoding (lncRNAs) that were differentially abundant as a function of age.

View Article and Find Full Text PDF

Esophageal adenocarcinoma arises from Barrett's esophagus, a precancerous metaplastic replacement of squamous by columnar epithelium in response to chronic inflammation. Multi-omics profiling, integrating single-cell transcriptomics, extracellular matrix proteomics, tissue-mechanics and spatial proteomics of 64 samples from 12 patients' paths of progression from squamous epithelium through metaplasia, dysplasia to adenocarcinoma, revealed shared and patient-specific progression characteristics. The classic metaplastic replacement of epithelial cells was paralleled by metaplastic changes in stromal cells, ECM and tissue stiffness.

View Article and Find Full Text PDF

Measuring the abundance of biological molecules and their chemical modifications in blood and tissues has been the cornerstone of research and medical diagnoses for decades. Although the number and variety of molecules that can be measured have expanded exponentially, the blood biomarkers routinely assessed in medical practice remain limited to a few dozen, which have not substantially changed over the last 30-40 years. The discovery of novel biomarkers would allow, for example, risk stratification or monitoring of disease progression or the effectiveness of treatments and interventions, improving clinical practice in myriad ways.

View Article and Find Full Text PDF

Aging slowly erodes skeletal muscle strength and mass, eventually leading to profound functional deficits and muscle atrophy. The molecular mechanisms of skeletal muscle aging are not well understood. To better understand mechanisms of muscle aging, we investigated the potential role of ATF4, a transcription regulatory protein that can rapidly promote skeletal muscle atrophy in young animals deprived of adequate nutrition or activity.

View Article and Find Full Text PDF

Huntington's disease (HD) is a neurodegenerative disease caused by a CAG repeat expansion in the Huntingtin (HTT) gene. The resulting polyglutamine (polyQ) tract alters the function of the HTT protein. Although HTT is expressed in different tissues, the medium-spiny projection neurons (MSNs) in the striatum are particularly vulnerable in HD.

View Article and Find Full Text PDF

Early events associated with chronic inflammation and cancer involve significant remodeling of the extracellular matrix (ECM), which greatly affects its composition and functional properties. Using lung squamous cell carcinoma (LSCC), a chronic inflammation-associated cancer (CIAC), we optimized a robust proteomic pipeline to discover potential biomarker signatures and protein changes specifically in the stroma. We combined ECM enrichment from fresh human tissues, data-independent acquisition (DIA) strategies, and stringent statistical processing to analyze "Tumor" and matched adjacent histologically normal ("Matched Normal") tissues from patients with LSCC.

View Article and Find Full Text PDF

In this themed issue of , in partnership with the U.S. Human Proteome Organization, we are proud to present the latest research featured at the 17th Annual US HUPO conference: Proteomics from Single Cell to Systems Biology in Health and Disease.

View Article and Find Full Text PDF

In spite of its central role in biology and disease, protein turnover is a largely understudied aspect of most proteomic studies due to the complexity of computational workflows that analyze in vivo turnover rates. To address this need, we developed a new computational tool, TurnoveR, to accurately calculate protein turnover rates from mass spectrometric analysis of metabolic labeling experiments in Skyline, a free and open-source proteomics software platform. TurnoveR is a straightforward graphical interface that enables seamless integration of protein turnover analysis into a traditional proteomics workflow in Skyline, allowing users to take advantage of the advanced and flexible data visualization and curation features built into the software.

View Article and Find Full Text PDF

Aging is characterized by the accumulation of damage to macromolecules and cell architecture that triggers a proinflammatory state in blood and solid tissues, termed inflammaging. Inflammaging has been implicated in the pathogenesis of many age-associated chronic diseases as well as loss of physical and cognitive function. The search for mechanisms that underlie inflammaging focused initially on the hallmarks of aging, but it is rapidly expanding in multiple directions.

View Article and Find Full Text PDF

Mounting evidence has shown that the accumulation of senescent cells in the central nervous system contributes to neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. Cellular senescence is a state of permanent cell cycle arrest that typically occurs in response to exposure to sub-lethal stresses. However, like other non-dividing cells, senescent cells remain metabolically active and carry out many functions that require unique transcriptional and translational demands and widespread changes in the intracellular and secreted proteomes.

View Article and Find Full Text PDF

Increased age is blamed for a wide range of bone physiological changes, and although the underlying mechanisms affecting the decreased capacity for fracture healing are not fully understood, they are clearly linked to changes at the cellular level. Recent evidence suggests potential roles of senescent cells in response to most tissue injuries, including bone fractures. In this issue of the JCI, Liu, Zhang, and co-authors showed that a senolytic drug cocktail cleared senescent cells from the callus and improved bone fracture repair in aged mice.

View Article and Find Full Text PDF

Post-translational modifications (PTMs) occur dynamically, allowing cells to quickly respond to changes in the environment. Lysine residues can be targeted by several modifications including acylations (acetylation, succinylation, malonylation, glutarylation, and others), methylation, ubiquitination, and other modifications. One of the most efficient methods for the identification of post-translational modifications is utilizing immunoaffinity enrichment followed by high-resolution mass spectrometry.

View Article and Find Full Text PDF
Article Synopsis
  • Research is focusing on identifying plasma proteins that change with age and can predict health decline, making them valuable biomarkers for clinical use.
  • Advances in technology, like mass spectrometry and multiplexed assays, have enabled the analysis of thousands of proteins in biological samples, revealing insights into aging and health deterioration.
  • A literature review identified 232 age-associated proteins linked to various metabolic pathways, which could aid in developing new treatments and improving health outcomes.
View Article and Find Full Text PDF

Cellular senescence is a complex stress response that induces an essentially permanent cell cycle arrest and a complex secretory phenotype termed the senescence-associated secretory phenotype (SASP), which drives numerous aging pathologies. Characterization of the SASP can provide insights into aging and disease mechanisms, aging biomarker candidates, and targets for counteracting the deleterious effects of senescent cells. Here we describe a mass spectrometry (MS)-compatible protocol to (1) generate senescent cells using different stimuli, (2) collect conditioned medium containing proteins secreted by senescent cells (i.

View Article and Find Full Text PDF