Background: Organ-mounted robots adhere to the surface of a mobile organ as a platform for minimally invasive interventions, providing passive compensation of physiological motion. This approach is beneficial during surgery on the beating heart. Accurate localization in such applications requires accounting for the heartbeat and respiratory motion.
View Article and Find Full Text PDFBackground: Organ-mounted robots address the problem of beating-heart surgery by adhering to the heart, passively providing a platform that approaches zero relative motion. Because of the quasi-periodic deformation of the heart due to heartbeat and respiration, registration must address not only spatial registration but also temporal registration.
Methods: Motion data were collected in the porcine model in vivo (N = 6).
Background: Organ-mounted robots passively compensate heartbeat and respiratory motion. In model-guided procedures, this motion can be a significant source of information that can be used to aid in localization or to add dynamic information to static preoperative maps.
Methods: Models for estimating periodic motion are proposed for both position and orientation.
Gene therapies for heart failure have emerged in recent years, yet they lack an effective method for minimally invasive, uniform delivery. To address this need we developed a minimally invasive parallel wire robot for epicardial interventions. Accurate and safe interventions using this device require control of force in addition to injector position.
View Article and Find Full Text PDFBackground: In preclinical testing, ventricular wall injection of hydrogels has been shown to be effective in modulating ventricular remodeling and preserving cardiac function. For some approaches, early-stage clinical trials are under way. The hydrogel delivery method varies, with minimally invasive approaches being preferred.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
September 2016
Gene therapies have emerged as a promising treatment for congestive heart failure, yet they lack a method for minimally invasive, uniform delivery. To address this need we developed Cerberus, a minimally invasive parallel wire robot for cardiac interventions. Prior work on Cerberus was limited to controlling the device using only position feedback.
View Article and Find Full Text PDFProc IEEE Annu Northeast Bioeng Conf
April 2015
Gene therapies have emerged as a promising treatment for congestive heart failure, yet they lack a method for minimally invasive, uniform delivery. To address this need we developed Cerberus, a minimally invasive parallel wire robot for cardiac interventions. Prior work on controlling the movement of Cerberus required accurate knowledge of device geometry.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
November 2015
This paper describes the design and preliminary testing of a planar parallel wire robot that adheres to the surface of the beating heart and provides a stable platform for minimally invasive epicardial therapies. The device is deployed through a small subxiphoid skin incision and attaches to the heart using suction. This methodology obviates mechanical stabilization and lung deflation, which are typically required during minimally invasive beating-heart surgery.
View Article and Find Full Text PDFThis paper presents a framework for localizing a miniature epicardial crawling robot, HeartLander, on the beating heart using only 6-degree-of-freedom position measurements from an electromagnetic position tracker and a dynamic surface model of the heart. Using only this information, motion and observation models of the system are developed such that a particle filter can accurately estimate not only the location of the robot on the surface of the heart, but also the pose of the heart in the world coordinate frame as well as the current physiological phase of the heart. The presented framework is then demonstrated in simulation on a dynamic 3-D model of the human heart and a robot motion model which accurately mimics the behavior of the HeartLander robot.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
August 2013
This paper presents preliminary work toward localizing on a surface which undergoes periodic deformation, as an aspect of research on HeartLander, a miniature epicardial crawling robot. Using only position measurements from the robot, the aim of this work is to use the nonuniform movements of the heart as features to aid in localization. Using a particle filter, with motion and observation models which accurately model the robotic system, registration and localization parameters can be quickly and accurately identified.
View Article and Find Full Text PDFProc IEEE RAS EMBS Int Conf Biomed Robot Biomechatron
December 2012
HeartLander is a miniature mobile robot which adheres to and crawls over the surface of the beating heart to provide therapies in a minimally invasive manner. Although HeartLander inherently provides a stable operating platform, the motion of the surface of the heart remains an important factor in the operation of the robot. The quasi-periodic motion of the heart due to physiological cycles, respiration and the heartbeat, affects the ability of the robot to move, as well as localize accurately.
View Article and Find Full Text PDFHeartLander, a small mobile robot designed to provide treatments to the surface of the beating heart, overcomes a major difficulty of minimally invasive cardiac surgery, providing a stable operating platform. This is achieved inherently in the way the robot adheres to and crawls over the surface of the heart. This mode of operation does not require physiological motion compensation to provide this stable environment; however, modeling of physiological motion is advantageous in providing more accurate position estimation as well as synchronization of motion to the physiological cycles.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
August 2012
HeartLander is a small mobile robot which adheres to and navigates over the surface of the heart to provide therapies in a minimally invasive manner. HeartLander's ability to efficiently operate in this dynamic environment is greatly affected by physiological motion, namely the cardiac and respiration cycles. Synchronization of robot motion with minimal intrapericardial pressure results in safer and more efficient travel.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
March 2011
The authors present ongoing work on the use of a variable curvature flexible needle steering system to gain percutaneous access to the kidney for medical interventions. A nonlinear control law is introduced which drives the needle to track a predetermined planar path using a steering approach based on duty-cycled rotation during insertion. Renal access is performed in simulation and tested in vitro in a tissue phantom to validate the proposed control method.
View Article and Find Full Text PDFThis study demonstrates the feasibility of using a miniature robot to perform complex, single-incision, minimal access surgery. Instrument positioning and lack of triangulation complicate single-incision laparoscopic surgery, and open surgical procedures are highly invasive. Using minimally invasive techniques with miniature robotic platforms potentially offers significant clinical benefits.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
April 2010
Natural Orifice Translumenal Endoscopic Surgery (NOTES) is potentially the next step in minimally invasive surgery. This type of procedure could reduce patient trauma through eliminating external incisions, but poses many surgical challenges that are not sufficiently overcome with current flexible endoscopy tools. A robotic platform that attempts to emulate a laparoscopic interface for performing NOTES procedures is being developed to address these challenges.
View Article and Find Full Text PDFBackground: The application of flexible endoscopy tools for Natural Orifice Translumenal Endoscopic Surgery (NOTES) is constrained due to limitations in dexterity, instrument insertion, navigation, visualization, and retraction. Miniature endolumenal robots can mitigate these constraints by providing a stable platform for visualization and dexterous manipulation. This video demonstrates the feasibility of using an endolumenal miniature robot to improve vision and to apply off-axis forces for task assistance in NOTES procedures.
View Article and Find Full Text PDFBackground: Natural orifice translumenal endoscopic surgery (NOTES) is surgically challenging. Current endoscopic tools provide an insufficient platform for visualization and manipulation of the surgical target. This study demonstrates the feasibility of using a miniature in vivo robot to enhance visualization and provide off-axis dexterous manipulation capabilities for NOTES.
View Article and Find Full Text PDFStud Health Technol Inform
May 2008
Natural Orifice Translumenal Endoscopic Surgery (NOTES) is potentially the next paradigm shift in minimally invasive surgery. Currently, NOTES procedures are performed using modified endoscopic tools with significant constraints. New tools are necessary that allow the surgeon to better visualize and dexterously manipulate within the surgical environment.
View Article and Find Full Text PDFAdvances in endoscopic techniques for abdominal procedures continue to reduce the invasiveness of surgery. Gaining access to the peritoneal cavity through small incisions prompted the first significant shift in general surgery. The complete elimination of external incisions through natural orifice access is potentially the next step in reducing patient trauma.
View Article and Find Full Text PDF