Background: Clozapine is the most effective antipsychotic for treatment-resistant schizophrenia. Although serum clozapine levels can help guide treatment, they are underutilized owing to requirements for frequent venous blood draws and lack of immediate results.
Methods: Clozapine levels measured with a novel immunoassay technology (which enables point-of-care development) were compared with those measured by standard liquid chromatography/tandem mass spectrometry (LC-MS/MS).
Quantitative real-time PCR (qPCR) has been the standard for nucleic acid quantification as it has a large dynamic range and good sensitivity. Digital PCR is rapidly supplanting qPCR in many applications as it provides excellent quantitative precision. However, both techniques require extensive sample preparation, and highly multiplexed assays that quantify multiple targets can be difficult to design and optimize.
View Article and Find Full Text PDFCurrently, reliable valving on integrated microfluidic devices fabricated from rigid materials is confined to expensive and complex methods. Freeze-thaw valves (FTVs) can provide a low cost, low complexity valving mechanism, but reliable implementation of them has been greatly hindered by the lack of ice nucleation sites within the valve body's small volume. Work to date has required very low temperatures (on the order of -40 °C or colder) to induce freezing without nucleation sites, making FTVs impractical due to instrument engineering challenges.
View Article and Find Full Text PDFSelective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) chemistries exploit small electrophilic reagents that react with 2'-hydroxyl groups to interrogate RNA structure at single-nucleotide resolution. Mutational profiling (MaP) identifies modified residues by using reverse transcriptase to misread a SHAPE-modified nucleotide and then counting the resulting mutations by massively parallel sequencing. The SHAPE-MaP approach measures the structure of large and transcriptome-wide systems as accurately as can be done for simple model RNAs.
View Article and Find Full Text PDFMany biological processes are RNA-mediated, but higher-order structures for most RNAs are unknown, which makes it difficult to understand how RNA structure governs function. Here we describe selective 2'-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP) that makes possible de novo and large-scale identification of RNA functional motifs. Sites of 2'-hydroxyl acylation by SHAPE are encoded as noncomplementary nucleotides during cDNA synthesis, as measured by massively parallel sequencing.
View Article and Find Full Text PDFStructured RNA elements within messenger RNA often direct or modulate the cellular production of active proteins. As reviewed here, RNA structures have been discovered that govern nearly every step in protein production: mRNA production and stability; translation initiation, elongation, and termination; protein folding; and cellular localization. Regulatory RNA elements are common within RNAs from every domain of life.
View Article and Find Full Text PDFSmall ribozymes such as the hairpin, hammerhead, VS, glm S, and hepatitis delta virus (HDV) are self-cleaving RNAs that are typically characterized by kinetics and structural methods. Working with these RNAs requires attention to numerous experimental details. In this chapter we focus on four different experimental aspects of ribozyme studies: preparing the RNA, mapping its structure with reverse transcription and end-labeled techniques, solvent isotope experiments, and co-transcriptional cleavage assays.
View Article and Find Full Text PDFRNA SHAPE chemistry yields quantitative, single-nucleotide resolution structural information based on the reaction of the 2'-hydroxyl group of conformationally flexible nucleotides with electrophilic SHAPE reagents. However, SHAPE technology has been limited by the requirement that sites of RNA modification be detected by primer extension. Primer extension results in loss of information at both the 5' and 3' ends of an RNA and requires multiple experimental steps.
View Article and Find Full Text PDFRNA plays essential roles in much of biology. These functions are dictated by structures mediated by hydrogen bonding, stacking, electrostatics, and steric interactions. Roles of unsatisfied hydrogen bond functionalities in these structures are less well understood.
View Article and Find Full Text PDFSecondary structure plays critical roles in nucleic acid function. Mismatches in DNA can lead to mutation and disease, and some mismatches involve a protonated base. Among protonated mismatches, A(+).
View Article and Find Full Text PDFDouble and triple mutant thermodynamic cycles provide a means to dissect the cooperativity of RNA and DNA folding at both the secondary and tertiary structural levels through use of the thermodynamic box or cube. In this article, we describe three steps for applying thermodynamic cycles to nucleic acid folding, with considerations of both conceptual and experimental features. The first step is design of an appropriate system and development of hypotheses regarding which residues might interact.
View Article and Find Full Text PDFThe hepatitis delta virus (HDV) ribozyme uses the nucleobase C75 and a hydrated Mg(2+) ion as the general acid-base catalysts in phosphodiester bond cleavage at physiological salt. A mechanistic framework has been advanced that involves one Mg(2+)-independent and two Mg(2+)-dependent channels. The rate-pH profile for wild-type (WT) ribozyme in the Mg(2+)-free channel is inverted relative to the fully Mg(2+)-dependent channel, with each having a near-neutral pKa.
View Article and Find Full Text PDFThe RNA World hypothesis posits that life emerged from self-replicating RNA molecules. For any single biopolymer to be the basis for life, it must both store information and perform diverse functions. It is well known that RNA can store information.
View Article and Find Full Text PDFSecondary structural motifs play essential roles in the folding and function of RNA and DNA molecules. Previous work from our lab compared the folding of small DNA and RNA hairpin loops containing a sheared GA pair [Moody, E. M.
View Article and Find Full Text PDF