Publications by authors named "Nathan A Pack"

The A2(A) receptor agonist, regadenoson, is increasingly used as a vasodilator during nuclear myocardial perfusion imaging. Regadenoson is administered as a single, fixed dose. Given the frequency of obesity in patients with symptoms of heart disease, it is important to know whether the fixed dose of regadenoson produces maximal coronary hyperemia in subjects of widely varying body size.

View Article and Find Full Text PDF

Background: Quantitative estimates of myocardial perfusion generally require accurate measurement of the arterial input function (AIF). The saturation of signal intensity in the blood that occurs with most doses of contrast agent makes obtaining an accurate AIF challenging. This work seeks to evaluate the performance of a method that uses a radial k-space perfusion sequence and multiple saturation recovery times (SRT) to quantify myocardial perfusion with cardiovascular magnetic resonance (CMR).

View Article and Find Full Text PDF

Dynamic contrast-enhanced MRI has been used to quantify myocardial perfusion in recent years. Published results have varied widely, possibly depending on the method used to analyze the dynamic perfusion data. Here, four quantitative analysis methods (two-compartment modeling, Fermi function modeling, model-independent analysis, and Patlak plot analysis) were implemented and compared for quantifying myocardial perfusion.

View Article and Find Full Text PDF

Background: Model-independent analysis with B-spline regularization has been used to quantify myocardial blood flow (perfusion) in dynamic contrast-enhanced cardiovascular magnetic resonance (CMR) studies. However, the model-independent approach has not been extensively evaluated to determine how the contrast-to-noise ratio between blood and tissue enhancement affects estimates of myocardial perfusion and the degree to which the regularization is dependent on the noise in the measured enhancement data. We investigated these questions with a model-independent analysis method that uses iterative minimization and a temporal smoothness regularizer.

View Article and Find Full Text PDF

The objective of this study was to validate a deformable image registration technique, termed Hyperelastic Warping, for left ventricular strain measurement during systole using cine-gated, non-tagged MR images with strains measured from tagged MRI. The technique combines deformation from high resolution, non-tagged MR image data with a detailed computational model, including estimated myocardial material properties, fiber direction, and active fiber contraction, to provide a comprehensive description of myocardial contractile function. A normal volunteer (male, age 30) with no history of cardiac pathology was imaged with a 1.

View Article and Find Full Text PDF

The objective of this study was to investigate if dynamic contrast-enhanced magnetic resonance imaging (MRI) can be used to quantitate the distribution volume (v(e)) in regions of normal and infarcted myocardium. v(e) reflects the volume of the extracellular, extravascular space within the myocardial tissue. In regions of the heart where an infarct has occurred, the loss of viable cardiac cells results in an elevated v(e) compared to normal regions.

View Article and Find Full Text PDF