Publications by authors named "Nathan A Neisius"

Conversion electrodes, such as antimony (Sb), are high energy density electrode materials for sodium-ion batteries (NIBs). These materials are limited in their performance due to the mechanical instability of these systems resulting from volume expansion of the material during cycling. Stabilizing conversion materials using a conductive polymer binder (CPB) protective layer is an effective way to enhance the performance of these materials.

View Article and Find Full Text PDF

Nanoparticle syntheses are designed to produce the desired product in high yield but traditionally neglect atom-economy. Here we report that the simple, but significant, change of the solvent from 1-octadecene (1-ODE) to the operationally inert octadecane (ODA) permits an atom-economical synthesis of copper selenophosphate (CuPSe) nanoparticles. This change eliminates the competing selenium (Se) delivery pathways from our first report that required an excess of Se.

View Article and Find Full Text PDF