Publications by authors named "Nathan A DeCarolis"

Astronauts traveling to Mars will be exposed to chronic low doses of galactic cosmic space radiation, which contains highly charged, high-energy (HZE) particles. Fe-HZE-particle exposure decreases hippocampal dentate gyrus (DG) neurogenesis and disrupts hippocampal function in young adult rodents, raising the possibility of impaired astronaut cognition and risk of mission failure. However, far less is known about how exposure to other HZE particles, such as Si, influences hippocampal neurogenesis and function.

View Article and Find Full Text PDF

Aging is strongly correlated with decreases in neurogenesis, the process by which neural stem and progenitor cells proliferate and differentiate into new neurons. In addition to stem-cell-intrinsic factors that change within the aging stem-cell pool, recent evidence emphasizes new roles for systemic and microenvironmental factors in modulating the neurogenic niche. This article focuses on new insights gained through the use of heterochronic parabiosis models, in which an old mouse and a young circulatory system are joined.

View Article and Find Full Text PDF

The high-LET HZE particles from galactic cosmic radiation pose tremendous health risks to astronauts, as they may incur sub-threshold brain injury or maladaptations that may lead to cognitive impairment. The health effects of HZE particles are difficult to predict and unfeasible to prevent. This underscores the importance of estimating radiation risks to the central nervous system as a whole as well as to specific brain regions like the hippocampus, which is central to learning and memory.

View Article and Find Full Text PDF

Astronauts on multi-year interplanetary missions will be exposed to a low, chronic dose of high-energy, high-charge particles. Studies in rodents show acute, nonfractionated exposure to these particles causes brain changes such as fewer adult-generated hippocampal neurons and stem cells that may be detrimental to cognition and mood regulation and thus compromise mission success. However, the influence of a low, chronic dose of these particles on neurogenesis and stem cells is unknown.

View Article and Find Full Text PDF

Radial glia-like cells (RGCs) are the hypothesized source of adult hippocampal neurogenesis. However, the current model of hippocampal neurogenesis does not fully incorporate the in vivo heterogeneity of RGCs. In order to better understand the contribution of different RGC subtypes to adult hippocampal neurogenesis, we employed widely used transgenic lines (Nestin-CreER(T2) and GLAST::CreER(T2) mice) to explore how RGCs contribute to neurogenesis under basal conditions and after stimulation and depletion of neural progenitor cells.

View Article and Find Full Text PDF

Notch1 regulates neural stem cell (NSC) number during development, but its role in adult neurogenesis is unclear. We generated nestin-CreER(T2)/R26R-YFP/Notch1(loxP/loxP) [Notch1inducible knock-out (iKO)] mice to allow tamoxifen (TAM)-inducible elimination of Notch1 and concomitant expression of yellow fluorescent protein (YFP) in nestin-expressing Type-1 NSCs and their progeny in the adult hippocampal subgranular zone (SGZ). Consistent with previous research, YFP+ cells in all stages of neurogenesis were evident in the subgranular zone (SGZ) of wild-type (WT) mice (nestin-CreER(T2)/R26R-YFP/Notch1(w/w)) after tamoxifen (post-TAM), producing adult-generated YFP+ dentate gyrus neurons.

View Article and Find Full Text PDF

The long-term response to chronic stress is variable, with some individuals developing maladaptive functioning, although other "resilient" individuals do not. Stress reduces neurogenesis in the dentate gyrus subgranular zone (SGZ), but it is unknown if stress-induced changes in neurogenesis contribute to individual vulnerability. Using a chronic social defeat stress model, we explored whether the susceptibility to stress-induced social avoidance was related to changes in SGZ proliferation and neurogenesis.

View Article and Find Full Text PDF

Over one-quarter of adult Americans are diagnosed with a mental illness like Major Depressive Disorder (MDD), Post-Traumatic Stress Disorder (PTSD), schizophrenia, and Alzheimer's Disease. In addition to the exceptional personal burden these disorders exert on patients and their families, they also have enormous cost to society. Although existing pharmacological and psychosocial treatments alleviate symptoms in many patients, the comorbidity, severity, and intractable nature of mental disorders strongly underscore the need for novel strategies.

View Article and Find Full Text PDF

Critical cellular functions, including stem cell maintenance, fate determination, and cellular behavior, are governed by canonical Wnt signaling, an evolutionarily conserved pathway whose intracellular signal is transduced by beta-catentin. Emerging evidence suggests that canonical Wnt signaling influences cellular aging, indicating that increases in Wnt signaling delay age-related deficits.1 However, recent Science papers suggest that Wnt signaling accelerates the onset of aging.

View Article and Find Full Text PDF

Understanding the fate of adult-generated neurons and the mechanisms that influence them requires consistent labeling and tracking of large numbers of stem cells. We generated a nestin-CreER(T2)/R26R-yellow fluorescent protein (YFP) mouse to inducibly label nestin-expressing stem cells and their progeny in the adult subventricular zone (SVZ) and subgranular zone (SGZ). Several findings show that the estrogen ligand tamoxifen (TAM) specifically induced recombination in stem cells and their progeny in nestin-CreER(T2)/R26R-YFP mice: 97% of SGZ stem-like cells (GFAP/Sox2 with radial glial morphology) expressed YFP; YFP+ neurospheres could be generated in vitro after recombination in vivo, and maturing YFP+ progeny were increasingly evident in the olfactory bulb (OB) and dentate gyrus (DG) granule cell layer.

View Article and Find Full Text PDF

Chronic morphine administration (via subcutaneous pellet) decreases the size of dopamine neurons in the ventral tegmental area (VTA), a key reward region in the brain, yet the molecular basis and functional consequences of this effect are unknown. In this study, we used viral-mediated gene transfer in rat to show that chronic morphine-induced downregulation of the insulin receptor substrate 2 (IRS2)-thymoma viral proto-oncogene (Akt) signaling pathway in the VTA mediates the decrease in dopamine cell size seen after morphine exposure and that this downregulation diminishes morphine reward, as measured by conditioned place preference. We further show that the reduction in size of VTA dopamine neurons persists up to 2 weeks after morphine withdrawal, which parallels the tolerance to morphine's rewarding effects caused by previous chronic morphine exposure.

View Article and Find Full Text PDF

Strain-dependent differences have been used to highlight unknown genetic contributions to important behavioral and physiological end points. In this regard, the Fischer (F344) and Lewis (LEW) rat strains have often been studied because they exhibit a myriad of behavioral and physiological differences. Recently, schedule-induced polydipsia (SIP), a potential model of stress and drug abuse, has been reported to differ between the two strains (see [Pharmacol.

View Article and Find Full Text PDF