Climate change threatens food security by affecting the productivity of major cereal crops. To date, agroclimatic risk projections through indicators have focused on expected hazards exposure during the crop's current vulnerable seasons, without considering the non-stationarity of their phenology under evolving climatic conditions. We propose a new method for spatially classifying agroclimatic risks for wheat, combining high-resolution climatic data with a wheat's phenological model.
View Article and Find Full Text PDFSynthetic Nitrogen (N) usage in agriculture has greatly increased food supply over the past century. However, the intensive use of N fertilizer is nevertheless the source of numerous environmental issues and remains a major challenge for policymakers to understand, measure, and quantify the interactions and trade-offs between ecosystem carbon and terrestrial biodiversity loss. In this study, we investigate the impacts of a public policy scenario that aims to halve N fertilizer application across European Union (EU) agriculture on both carbon (C) sequestration and biodiversity changes.
View Article and Find Full Text PDFA recent article by Luyssaert et al. (Nature 562:259-262, 2018) analyses the climate impact of forest management in the European Union, considering both biogeochemical (i.e.
View Article and Find Full Text PDFThe significant worldwide increase in observed river runoff has been tentatively attributed to the stomatal "antitranspirant" response of plants to rising atmospheric CO(2) [Gedney N, Cox PM, Betts RA, Boucher O, Huntingford C, Stott PA (2006) Nature 439: 835-838]. However, CO(2) also is a plant fertilizer. When allowing for the increase in foliage area that results from increasing atmospheric CO(2) levels in a global vegetation model, we find a decrease in global runoff from 1901 to 1999.
View Article and Find Full Text PDF