Publications by authors named "Nathalie Zahra"

We report proof-of-principle experiments regarding a dynamic microarray protocol enabling accurate and semi-quantitative DNA analysis for re-sequencing, fingerprinting and genotyping. Single-stranded target molecules hybridise to surface-bound probes during initial gradual cooling with high-fidelity. Real-time tracking of target denaturation (via fluorescence) during a 'dynamic' gradual heating phase permits 'melt-curve' analysis.

View Article and Find Full Text PDF

An investigation into the effects of physical and chemical enhancement on subsequent presumptive and confirmatory tests for human blood is presented. Human blood was deposited onto porous (white 80 gsm paper and brown envelope) and non-porous (tile and linoleum) substrates in a depletion series (30 depletions on non-porous and 20 on porous) and subjected to three ageing periods; 1, 7 and 28 days. A number of enhancement techniques were tested [fluorescence, black magnetic powder (BMP), iron-oxide black powder suspension (PS), cyanoacrylate (CA) fuming, acid violet 17 (AV17), acid yellow 7 (AY7), ninhydrin, DFO and Bluestar Forensic Magnum (BFM) luminol] to evaluate their potential effects on subsequent presumptive and confirmatory tests.

View Article and Find Full Text PDF

Biological samples recovered for forensic investigations are often degraded and/or have low amounts of DNA; in addition, in some instances the samples may be contaminated with chemicals that can act as PCR inhibitors. As a consequence this can make interpretation of the results challenging with the possibility of having partial profiles and false negative results. Because of the impact of DNA analysis on forensic investigations, it is important to monitor the process of DNA profiling, in particular the amplification reaction.

View Article and Find Full Text PDF

The REvolutionary Approaches and Devices for Nucleic Acid analysis (READNA) project received funding from the European Commission for 41/2 years. The objectives of the project revolved around technological developments in nucleic acid analysis. The project partners have discovered, created and developed a huge body of insights into nucleic acid analysis, ranging from improvements and implementation of current technologies to the most promising sequencing technologies that constitute a 3(rd) and 4(th) generation of sequencing methods with nanopores and in situ sequencing, respectively.

View Article and Find Full Text PDF

In this study, we have developed a PCR multiplex that can be used to assess DNA degradation and at the same time monitor for inhibition: primers have been designed to amplify human, pig, and rabbit DNA, allowing pig and rabbit to be used as experimental models for taphonomic research, but also enabling studies on human DNA persistence in forensic evidence. Internal amplified controls have been added to monitor for inhibition, allowing the effects of degradation and inhibition to be differentiated. Sequence data for single-copy nuclear recombination activation gene (RAG-1) from human, pig, and rabbit were aligned to identify conserved regions and primers were designed that targeted amplicons of 70, 194, 305, and 384 bp.

View Article and Find Full Text PDF

Circulating nucleic acids (CNAs) are under investigation as a liquid biopsy in cancer. However there is wide variation in blood processing and methods for isolation of circulating free DNA (cfDNA) and microRNAs (miRNAs). Here we compare the extraction efficiency and reproducibility of 4 commercially available kits for cfDNA and 3 for miRNA using spike-in of reference templates.

View Article and Find Full Text PDF

Forensic DNA profiling uses a series of commercial kits that co-amplify several loci in one reaction; the products of the PCR are fluorescently labelled and analysed using CE. Before CE, an aliquot of the PCR is mixed with formamide and an internal lane size standard. Using the SGM Plus amplification kit, we have developed two internal non-amplified controls of 80 bp and 380 bp that are labelled with ROX fluorescent dye and added to the PCR.

View Article and Find Full Text PDF

DNA extracted from forensic samples can be degraded and also contain co-extracted contaminants that inhibit PCR. The effects of DNA degradation and PCR inhibition are often indistinguishable when examining a DNA profile. Two internal amplification controls (IACs) were developed to improve quality control of PCR using the AmpFℓSTR® SGM Plus® kit.

View Article and Find Full Text PDF