Publications by authors named "Nathalie Vast"

Bismuth is one of the rare materials in which second sound has been experimentally observed. Our exact calculations of thermal transport with the Boltzmann equation predict the occurrence of this Poiseuille phonon flow between ≈1.5 and ≈3.

View Article and Find Full Text PDF

We use density functional theory to study the density of the 3sp semicore states in transition and noble metals. The first objective is to understand how semicore states influence cohesive properties which mainly depend on the valence density. We define a localization radius for the semicore density which is found to be a crucial parameter and to heavily influence the cohesive properties.

View Article and Find Full Text PDF

We propose a fully ab initio approach to calculate electron-phonon scattering times for excited electrons interacting with short-wavelength (intervalley) phonons in semiconductors. Our approach is based on density functional perturbation theory and on the direct integration of electronic scattering probabilities over all possible final states with no ad hoc assumptions. We apply it to the deexcitation of hot electrons in GaAs, and calculate the lifetime of the direct exciton in GaP, both in excellent agreement with experiments.

View Article and Find Full Text PDF

State-of-the-art theoretical methods fail in describing the optical absorption spectrum, band gap, and optical onset of Cu(2)O. We have extended a recently proposed self-consistent quasiparticle approach, based on the GW approximation, to the calculation of optical spectra, including excitonic effects. The band structure compares favorably with our present angle-resolved photoemission measurements.

View Article and Find Full Text PDF

We performed ab initio calculations of the anisotropic dielectric response of small-diameter single-walled carbon nanotubes in the framework of time-dependent density-functional theory. The calculated optical spectra are in very good agreement with experiment, both concerning absolute peak positions and anisotropy effects. The latter can only be described correctly when crystal local-field effects ("depolarization" effects) are fully taken into account.

View Article and Find Full Text PDF

The static dielectric properties of (001)(GaAs)(p)/(AlAs)(p) superlattices have been calculated as a function of their period p for 1< or = p < or =12, starting from density-functional theory. The interplay between quantum confinement and local field effects is shown to be crucial. For light polarized in the growth direction it leads to the otherwise surprising justification of the use of a classical effective medium theory, even for the smallest periods.

View Article and Find Full Text PDF

We present an ab initio calculation of the electron energy loss spectrum of rutile TiO2 in the energy range of 0 to 60 eV, focusing our interest on the excitation from the titanium 3p semicore levels. The results are compared to our measurements. Local field effects turn out to be crucial at those energies, and their inclusion in the calculation yields excellent agreement between theory and experiment.

View Article and Find Full Text PDF