Fiber-based materials have emerged as a promising option to increase the efficiency of water treatment plants while reducing their environmental impacts, notably by reducing the use of unsustainable chemicals and the size of the settling tank. Cellulose fiber-based super-bridging agents are sustainable, reusable, and versatile materials that considerably improve floc separation in conventional settling tanks or via alternative screening separation methods. In this study, the effectiveness of fiber-based materials for wastewater treatment was evaluated at lab-scale (0.
View Article and Find Full Text PDFBacteria are mechanically resistant biological structures that can sustain physical stress. Experimental data, however, have shown that high-aspect-ratio nanopillars deform bacterial cells upon contact. If the deformation is sufficiently large, it lyses the bacterial cell wall, ultimately leading to cell death.
View Article and Find Full Text PDFDespite the increasing concern about the harmful effects of micro- and nanoplastics (MNPs), there are no harmonized guidelines or protocols yet available for MNP ecotoxicity testing. Current ecotoxicity studies often use commercial spherical particles as models for MNPs, but in nature, MNPs occur in variable shapes, sizes and chemical compositions. Moreover, protocols developed for chemicals that dissolve or form stable dispersions are currently used for assessing the ecotoxicity of MNPs.
View Article and Find Full Text PDFIn this work, we probed the changes to some physicochemical properties of polystyrene microplastics generated from a disposable cup as a result of UV-weathering, using a range of spectroscopy, microscopy, and profilometry techniques. Thereafter, we aimed to understand how these physicochemical changes affect the microplastic transport potential and contaminant sorption ability in model freshwaters. Exposure to UV led to measured changes in microplastic hydrophobicity (20-23 % decrease), density (3% increase), carbonyl index (up to 746 % increase), and microscale roughness (24-86 % increase).
View Article and Find Full Text PDFUnderstanding the biological impacts of plastic pollution requires an effective methodology to detect unlabeled microplastics in environmental samples. Detecting unlabeled microplastics in an organism generally requires a digestion protocol, which results in the loss of spatial information on the distribution of microplastic within the organism and could lead to the disappearance of the smaller plastics. Fluorescence microscopy allows visualization of ingested microplastics but many labeling strategies are nonspecific and label biomass, thus limiting our ability to distinguish internalized plastics.
View Article and Find Full Text PDFJ Colloid Interface Sci
August 2023
Hypothesis: Pickering emulsions, defined as emulsions that are stabilized by colloidal particles, provide dispersion stability by preventing coalescence of the dispersed phase. In this study, we used a bifunctional hairy nanocellulose (BHNC) bearing both aldehyde and carboxylic acid groups as an stabilizer. We hypothesize that these particles as Pickering stabilizers can effectively reside at the oil-water interface, better than hairy nanocelluloses containing only carboxyl groups or aldehyde groups, and provide long-term stability without the need of any surfactants.
View Article and Find Full Text PDFThe anisotropic nature of 'graphenic' nanosheets enables them to form stable three-dimensional porous materials. The use of these porous structures has been explored in several applications including electronics and batteries, environmental remediation, energy storage, sensors, catalysis, tissue engineering, and many more. As method of fabrication greatly influences the final pore architecture, and chemical and mechanical characteristics and performance of these porous materials, it is essential to identify and address the correlation between property and function.
View Article and Find Full Text PDFSingle-use face masks can release microfibres upon exposure to environmental conditions. This study investigates the number of microfibres released in the presence and absence of UV irradiation and mechanical friction and the removal of the released microfibres in a simulated conventional wastewater treatment process. UV exposure results in a four-fold increase in the number of microfibres released from new masks and used masks resulting in ~2400 microfibres/mask and ~1100 microfibres/mask, respectively.
View Article and Find Full Text PDFNanopillars can influence how bacterial cells attach to a surface. Herein, we investigated whether self-assembled zinc oxide (ZnO) nanopillars synthesized on glass substrates via the conventional hydrothermal route possess anti-biofouling properties either by reducing the amount of initially attached cells or promoting the detachment of cells from the surface or both. To avoid complications associated with manual intervention methods of assessing bacterial attachment on nanopillar surfaces, we implemented a microfluidic approach.
View Article and Find Full Text PDFNanopillar-textured surfaces are of growing interest because of their ability to kill bacteria through physical damage without relying on antimicrobial chemicals. Although research on antibacterial nanopillars has progressed significantly in recent years, the effect of nanopillar hydrophobicity on bactericidal activity remains elusive. In this study, we investigated the mechano-bactericidal efficacy of etched silicon nanopillars against at nanopillar hydrophobicities from superhydrophilic to superhydrophobic.
View Article and Find Full Text PDFCarbon dots (CDs) are nanoparticles with tunable physicochemical and optical properties. Their resistance to photobleaching and relatively low toxicity render them attractive alternatives to fluorescent dyes and heavy metal-based quantum dots in the fields of bioimaging, sensing, catalysis, solar cells, and light-emitting diodes, among others. Moreover, they have garnered considerable attention as they lend themselves to green synthesis methods.
View Article and Find Full Text PDFUnderstanding of nanoplastic prevalence and toxicology is limited by imaging challenges resulting from their small size. Fluorescence microscopy is widely applied to track and identify microplastics in laboratory studies and environmental samples. However, conventional fluorescence microscopy, due to diffraction, lacks the resolution to precisely localize nanoplastics in tissues, distinguish them from free dye, or quantify them in environmental samples.
View Article and Find Full Text PDFSingle-use plastic production is higher now than ever before. Much of this plastic is released into aquatic environments, where it is eventually weathered into smaller nanoscale plastics. In addition to potential direct biological effects, nanoplastics may also modulate the biological effects of hydrophobic persistent organic legacy contaminants (POPs) that absorb to their surfaces.
View Article and Find Full Text PDFTo date, most studies of microplastics have been carried out with pristine particles. However, most plastics in the environment will be aged to some extent; hence, understanding the effects of weathering and accurately mimicking weathering processes are crucial. By using microplastics that lack environmental relevance, we are unable to fully assess the risks associated with microplastic pollution in the environment.
View Article and Find Full Text PDFIncreasing concern and research on the subject of plastic pollution has engaged the community of scientists working on the environmental health and safety of nanomaterials. While many of the methods developed in nano environment, health and safety work have general applicability to the study of particulate plastics, the nanometric size range has important consequences for both the analytical challenges of studying nanoscale plastics and the environmental implications of these incidental nanomaterials. Related to their size, nanoplastics are distinguished from microplastics with respect to their transport properties, interactions with light and natural colloids, a high fraction of particle molecules on the surface, bioavailability and diffusion times for the release of plastic additives.
View Article and Find Full Text PDFThe emergence and spread of extended-spectrum β-lactamases (ESBLs), metallo-β-lactamases (MBLs), or variant low-affinity penicillin-binding proteins (PBPs) pose a major threat to our ability to treat bacterial infection using β-lactam antibiotics. Although combinations of β-lactamase inhibitors with β-lactam agents have been clinically successful, there are no MBL inhibitors in current therapeutic use. Furthermore, recent clinical use of new-generation cephalosporins targeting PBP2a, an altered PBP, has led to the emergence of resistance to these antimicrobial agents.
View Article and Find Full Text PDFDespite plastic pollution being a significant environmental concern, the impact of environmental conditions such as temperature cycling on the fate of nanoplastics in cold climates remains unknown. To better understand nanoplastic mobility in subsurface environments following freezing and thawing cycles, the transport of 28 nm polystyrene nanoplastics exposed to either constant (10°C) temperature or freeze-thaw (FT) cycles (-10°C to 10°C) was investigated in saturated quartz sand. The stability and transport of nanoplastic suspensions were examined both in the presence and absence of natural organic matter (NOM) over a range of ionic strengths (3-100 mM NaCl).
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2020
An emulsion-templated porous material can be formed by polymerizing the continuous phase of high internal phase Pickering emulsions (HIPEs). Although polymerization is a key step to maintain the pore size and integrity of the final sponge, it lowers the effective specific surface area of the final sponge as the continuous phase makes up at least half of the HIPE's volume. Hence, eliminating the need of polymerization not only eases the material processing but also leads to a greater specific surface area.
View Article and Find Full Text PDFIn this study, a carboxyl-modified cellulosic hydrogel was developed as the base material for wound dressings. ε-poly-l-lysine, a natural polyamide, was then covalently linked to the hydrogel through a bioconjugation reaction, which was confirmed by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR). The antibacterial efficacy of the hydrogel was tested against two model bacteria, and , two of the most commonly found bacteria in wound infections.
View Article and Find Full Text PDFNanopillars have been shown to mechanically damage bacteria, suggesting a promising strategy for future antibacterial surfaces. However, the mechanisms underlying this phenomena remain unclear, which ultimately limits translational potential toward real-world applications. Using real-time and end-point analysis techniques, we demonstrate that in contrast to initial expectations, bacteria on multiple hydrophilic "mechano-bactericidal" surfaces remained viable unless exposed to a moving air-liquid interface, which caused considerable cell death.
View Article and Find Full Text PDF