Tissue mechanical disruption is often not sufficient to disrupt cell-to-cell interactions; this is particularly relevant for stromal cells that are embedded within the extracellular matrix. For this reason, different enzyme combinations have been described to enable the isolation of single-cell populations, particularly stromal cells. This chapter aims to describe different methods used for enzymatic digestion of stromal cell and leukocyte populations from secondary and tertiary lymphoid organs.
View Article and Find Full Text PDFTertiary lymphoid structures (TLS) are organized aggregates of lymphocytes, myeloid, and stromal cells that provide ectopic hubs for acquired immune responses. TLS share phenotypical and functional features with secondary lymphoid organs (SLO); however, they require persistent inflammatory signals to arise and are often observed at target sites of autoimmune disease, chronic infection, cancer, and organ transplantation. Over the past 10 years, important progress has been made in our understanding of the role of stromal fibroblasts in SLO development, organization, and function.
View Article and Find Full Text PDFLymphangiogenesis associated with tertiary lymphoid structure (TLS) has been reported in numerous studies. However, the kinetics and dynamic changes occurring to the lymphatic vascular network during TLS development have not been studied. Using a viral-induced, resolving model of TLS formation in the salivary glands of adult mice we demonstrate that the expansion of the lymphatic vascular network is tightly regulated.
View Article and Find Full Text PDF