The inducible p25 overexpression mouse model recapitulate many hallmark features of Alzheimer's disase including progressive neuronal loss, elevated Aβ, tau pathology, cognitive dysfunction, and impaired synaptic plasticity. We chose p25 mice to evaluate the physical and functional integrity of the blood-brain barrier (BBB) in a context of Tau pathology (pTau) and severe neurodegeneration, at an early (3 weeks ON) and a late (6 weeks ON) stage of the pathology. Using in situ brain perfusion and confocal imaging, we found that the brain vascular surface area and the physical integrity of the BBB were unaltered in p25 mice.
View Article and Find Full Text PDFMost antibodies display very low brain exposure due to the blood-brain barrier (BBB) preventing their entry into brain parenchyma. Transferrin receptor (TfR) has been used previously to ferry antibodies to the brain by using different formats of bispecific constructs. Tetravalent bispecific tandem immunoglobulin Gs (IgGs) (TBTIs) containing two paratopes for both TfR and protofibrillar forms of amyloid-beta (Aβ) peptide were constructed and shown to display higher brain penetration than the parent anti-Aβ antibody.
View Article and Find Full Text PDFSynapse impairment is thought to be an early event in Alzheimer's disease (AD); dysfunction and loss of synapses are linked to cognitive symptoms that precede neuronal loss and neurodegeneration. Neurogranin (Ng) is a somatodendritic protein that has been shown to be reduced in brain tissue but increased in the cerebrospinal fluid (CSF) of AD patients compared to age-matched controls. High levels of CSF Ng have been shown to reflect a more rapid AD progression.
View Article and Find Full Text PDFChronic inflammation represents a central component in the pathogenesis of Alzheimer's disease (AD). Recent work suggests that breaking immune tolerance by Programmed cell Death-1 (PD1) checkpoint inhibition produces an IFN-γ-dependent systemic immune response, with infiltration of the brain by peripheral myeloid cells and neuropathological as well as functional improvements even in mice with advanced amyloid pathology (Baruch et al., (): Nature Medicine, 22:135-137).
View Article and Find Full Text PDFIntroduction: Tau hyperphosphorylation and neurofibrillary tangles are histopathologic hallmarks of tauopathies. Histamine H3-receptor antagonists have been proposed to reduce tau hyperphosphorylation in preclinical models.
Methods: We evaluated the ability of SAR110894, a selective histamine H3-receptor antagonist, to inhibit tau pathology and prevent cognitive deficits in a tau transgenic mouse model (THY-Tau22).
Accumulation of neurofilaments (NFs), the major constituents of the neuronal cytoskeleton, is a distinctive feature of neurological diseases and several studies have shown that soluble NFs can be detected in the cerebrospinal fluid (CSF) of patients with neurological diseases, such as multiple sclerosis and frontotemporal dementia. Here we have used an inducible transgenic mouse model of neurodegeneration, CamKII-TetOp25 mice, to evaluate whether NF-L levels in CSF or blood can be used as a biochemical biomarker of neurodegeneration. Induction of p25 transgene brain expression led to increase in CSF and serum NF-L levels that correlated with ongoing neurodegeneration.
View Article and Find Full Text PDF