Publications by authors named "Nathalie Pineau"

As C-Xyloside has been suggested to be an initiator of glycosaminoglycan (GAG) synthesis, and GAGs such as Dermatan sulfate (DS) are potent enhancers of fibroblast growth factor (FGF)--10 action, we investigated if a C-Xylopyranoside derivative, (C-β-D-xylopyranoside-2-hydroxy-propane, C-Xyloside), could promote DS production by cultured normal human keratinocytes, how this occurs and if C-Xyloside could also stimulate FGF-dependent cell migration and proliferation. C-Xyloside-treated keratinocytes greatly increased secretion of total sulfated GAGs. Majority of the induced GAG was chondroitin sulfate/dermatan sulfate (CS/DS) of which the major secreted GAG was DS.

View Article and Find Full Text PDF

The mechanical properties of skin are determined primarily by the extracellular matrix of the dermis. These mechanical and biological properties change significantly as a function of age. Key components of the extracellular matrix are proteoglycans, which are molecules composed of a core protein and covalently attached glycosaminoglycans.

View Article and Find Full Text PDF

Skin aging entails drastic changes in the extracellular dermal matrix (ECM) and dermal-epidermal junction (DEJ). These biological alterations are reflected in the clinical signs of aged skin. A new C-xylopyranoside derivative, C-beta-D-xylopyranoside-2-hydroxy-propane (C-Xyloside) has been shown to induce neo-synthesis of matrix proteins such as glycosaminoglycans and heparan sulfate proteoglycans.

View Article and Find Full Text PDF

Severe structural changes, including deterioration of the mechanical properties of the dermis, occur during skin aging. It is well known that the degradation of the extracellular matrix contributes to the physical changes in aged skin. Whereas many studies have been devoted to age-related alterations of collagen fibrils, far less attention has been paid to another major family of extracellular matrix components, the glycosaminoglycans (GAGs) and proteoglycans (PGs).

View Article and Find Full Text PDF