Crop breeding for durable disease resistance is challenging due to the rapid evolution of pathogen virulence. While progress in resistance (R) gene cloning and stacking has accelerated in recent years, the identification of corresponding avirulence (Avr) genes in many pathogens is hampered by the lack of high-throughput screening options. To address this technology gap, we developed a platform for pooled library screening in plant protoplasts to allow rapid identification of interacting R-Avr pairs.
View Article and Find Full Text PDFSynthesis and accumulation of the storage lipid triacylglycerol in vegetative plant tissues has emerged as a promising strategy to meet the world's future need for vegetable oil. Sorghum (Sorghum bicolor) is a particularly attractive target crop given its high biomass, drought resistance and C photosynthesis. While oilseed-like triacylglycerol levels have been engineered in the C model plant tobacco, progress in C monocot crops has been lagging behind.
View Article and Find Full Text PDFDiacylglycerol acyltransferase 1 (DGAT1) catalyzes the acyl-CoA-dependent biosynthesis of triacylglycerol, the predominant component of seed oil. In some oil crops, including Brassica napus, the level of DGAT1 activity can have a substantial effect on triacylglycerol production. Structure-function insights into DGAT1, however, remain limited because of the lack of a three-dimensional detailed structure for this membrane-bound enzyme.
View Article and Find Full Text PDF