Publications by authors named "Nathalie Lamarche-Vane"

Kinases are known to have kinase activity independent functions. To gain further insights into potential kinase-independent functions of SLK/STK2, we have developed a kinase-dead allele, SLK using in vivo CRISPR/Cas technology. Our studies show that blastocysts homozygote for SLK do not develop into viable mice.

View Article and Find Full Text PDF

Epithelial-to-mesenchymal transition (EMT) plays a crucial role in metastasis, which is the leading cause of death in breast cancer patients. Here, we show that Cdc42 GTPase-activating protein (CdGAP) promotes tumor formation and metastasis to lungs in the HER2-positive (HER2) murine breast cancer model. CdGAP facilitates intravasation, extravasation, and growth at metastatic sites.

View Article and Find Full Text PDF

A central factor in the maintenance of tissue integrity is the response of stem cells to variations in the levels of niche signals. In the gut, intestinal stem cells (ISCs) depend on Wnt ligands for self-renewal and proliferation. Transient increases in Wnt signaling promote regeneration after injury or in inflammatory bowel diseases, whereas constitutive activation of this pathway leads to colorectal cancer.

View Article and Find Full Text PDF

Rho GTPases are regulators of the actin cytoskeleton and their activity is modulated by GTPase-activating proteins (GAPs) and guanine nucleotide exchanging factors (GEFs). Glomerular podocytes have numerous actin-based projections called foot processes and their alteration is characteristic of proteinuric kidney diseases. We reported previously that Rac1 hyperactivation in podocytes causes proteinuria and glomerulosclerosis in mice.

View Article and Find Full Text PDF

Purpose: The study aimed to identify novel genes for idiopathic hypogonadotropic hypogonadism (IHH).

Methods: A cohort of 1387 probands with IHH underwent exome sequencing and de novo, familial, and cohort-wide investigations. Functional studies were performed on 2 p190 Rho GTPase-activating proteins (p190 RhoGAP), ARHGAP35 and ARHGAP5, which involved in vivo modeling in larval zebrafish and an in vitro p190A-GAP activity assay.

View Article and Find Full Text PDF

High mortality of prostate cancer patients is primarily due to metastasis. Understanding the mechanisms controlling metastatic processes remains essential to develop novel therapies designed to prevent the progression from localized disease to metastasis. CdGAP plays important roles in the control of cell adhesion, migration, and proliferation, which are central to cancer progression.

View Article and Find Full Text PDF

Internalization and intracellular trafficking of G protein-coupled receptors (GPCRs) play pivotal roles in cell responsiveness. Dysregulation in receptor trafficking can lead to aberrant signaling and cell behavior. Here, using an endosomal BRET-based assay in a high-throughput screen with the prototypical GPCR angiotensin II type 1 receptor (AT1R), we sought to identify receptor trafficking inhibitors from a library of ~115,000 small molecules.

View Article and Find Full Text PDF

Microexons are small sized (≤51 bp) exons which undergo extensive alternative splicing in neurons, microglia, embryonic stem cells, and cancer cells, giving rise to cell type specific protein isoforms. Due to their small sizes, microexons provide a unique challenge for the splicing machinery. They frequently lack exon splicer enhancers/repressors and require specialized neighboring trans-regulatory and cis-regulatory elements bound by RNA binding proteins (RBPs) for their inclusion.

View Article and Find Full Text PDF

The role of RNA binding proteins in regulating the phagocytic and cytokine-releasing functions of microglia is unknown. Here, we show that microglia deficient for the QUAKING (QKI) RNA binding protein have increased proinflammatory cytokine release and defects in processing phagocytosed cargo. Splicing analysis reveals a role for QKI in regulating microexon networks of the Rho GTPase pathway.

View Article and Find Full Text PDF

Liver metastases remain a major cause of death from gastrointestinal tract cancers and other malignancies, such as breast and lung carcinomas. Understanding the underlying biology is essential for the design of effective therapies. We previously identified the chemokine CCL7 and its receptor CCR3 as critical mediators of invasion and metastasis in lung and colon carcinoma cells.

View Article and Find Full Text PDF

During development, neurons extend axons toward their appropriate synaptic targets to establish functional neuronal connections. The growth cone, a highly motile structure at the tip of the axon, is capable of recognizing extracellular guidance cues and translating them into directed axon outgrowth through modulation of the actin cytoskeleton. Netrin-1 mediates its attractive function through the receptor deleted in colorectal cancer (DCC) to promote axon outgrowth and guidance.

View Article and Find Full Text PDF

One of the fundamental steps during development of the nervous system is the formation of proper connections between neurons and their target cells-a process called neural wiring, failure of which causes neurological disorders ranging from autism to Down's syndrome. Axons navigate through the complex environment of a developing embryo toward their targets, which can be far away from their cell bodies. Successful implementation of neuronal wiring, which is crucial for fulfillment of all behavioral functions, is achieved through an intimate interplay between axon guidance and neural activity.

View Article and Find Full Text PDF

Liver metastases remain a major cause of death from gastrointestinal tract cancers as well as from other malignancies such as breast and lung carcinomas and melanoma. Understanding the underlying biology is essential for the design of effective targeted therapies. We previously reported that collagen IV α1/α2 overexpression in non-metastatic lung carcinoma (M27) cells increased their metastatic ability, specifically to the liver and documented high collagen IV levels in surgical resections of liver metastases from diverse tumor types.

View Article and Find Full Text PDF

Cdc42 GTPase-activating protein (CdGAP, also named ARHGAP31) is a negative regulator of the GTPases Rac1 and Cdc42. Associated with the rare developmental disorder Adams-Oliver Syndrome (AOS), CdGAP is critical for embryonic vascular development and VEGF-mediated angiogenesis. Moreover, CdGAP is an essential component in the synergistic interaction between TGFβ and ErbB-2 signaling pathways during breast cancer cell migration and invasion, and is a novel E-cadherin transcriptional co-repressor with Zeb2 in breast cancer.

View Article and Find Full Text PDF

Gangliosides (sialylated glycolipids) play an essential role in the CNS by regulating recognition and signaling in neurons. Metabolic blocks in processing and catabolism of gangliosides result in the development of severe neurologic disorders, including gangliosidoses manifesting with neurodegeneration and neuroinflammation. We demonstrate that 2 mammalian enzymes, neuraminidases 3 and 4, play important roles in catabolic processing of brain gangliosides by cleaving terminal sialic acid residues in their glycan chains.

View Article and Find Full Text PDF

Haploinsufficiency of the SYNGAP1 gene, which codes for a Ras GTPase-activating protein, impairs cognition both in humans and in mice. Decrease of Syngap1 in mice has been previously shown to cause cognitive deficits at least in part by inducing alterations in glutamatergic neurotransmission and premature maturation of excitatory connections. Whether Syngap1 plays a role in the development of cortical GABAergic connectivity and function remains unclear.

View Article and Find Full Text PDF

Mutations in the CdGAP/ARHGAP31 gene, which encodes a GTPase-activating protein for Rac1 and Cdc42, have been reported causative in the Adams-Oliver developmental syndrome often associated with vascular defects. However, despite its abundant expression in endothelial cells, CdGAP function in the vasculature remains unknown. Here, we show that vascular development is impaired in CdGAP-deficient mouse embryos at E15.

View Article and Find Full Text PDF

Rho family GTPases act as molecular switches regulating actin cytoskeleton dynamics. Attenuation of their signaling capacity is provided by GTPase-activating proteins (GAPs), including p190A, that promote the intrinsic GTPase activity of Rho proteins. In the current study we have performed a small-scale ENU mutagenesis screen and identified a novel loss of function allele of the p190A gene Arhgap35, which introduces a Leu1396 to Gln substitution in the GAP domain.

View Article and Find Full Text PDF

Background Information: Rho GTPases play an essential role during the development of the nervous system. They induce cytoskeletal rearrangements that are critical for the regulation of axon outgrowth and guidance. It is generally accepted that Rac1 and Cdc42 are positive regulators of axon outgrowth and guidance, whereas RhoA is a negative regulator.

View Article and Find Full Text PDF

The receptor deleted in colorectal cancer (DCC) mediates the attraction of growing axons to netrin-1 during brain development. In response to netrin-1 stimulation, DCC becomes a signaling platform to recruit proteins that promote axon outgrowth and guidance. The Ras GTPase-activating protein (GAP) p120RasGAP inhibits Ras activity and mediates neurite retraction and growth cone collapse in response to repulsive guidance cues.

View Article and Find Full Text PDF

During development, netrin-1 is both an attractive and repulsive axon guidance cue and mediates its attractive function through the receptor Deleted in Colorectal Cancer (DCC). The activation of Rho guanosine triphosphatases within the extending growth cone facilitates the dynamic reorganization of the cytoskeleton required to drive axon extension. The Rac1 guanine nucleotide exchange factor (GEF) Trio is essential for netrin-1-induced axon outgrowth and guidance.

View Article and Find Full Text PDF

CUX1 and CUX2 proteins are characterized by the presence of three highly similar regions called Cut repeats 1, 2, and 3. Although CUX1 is ubiquitously expressed, CUX2 plays an important role in the specification of neuronal cells and continues to be expressed in postmitotic neurons. Cut repeats from the CUX1 protein were recently shown to stimulate 8-oxoguanine DNA glycosylase 1 (OGG1), an enzyme that removes oxidized purines from DNA and introduces a single strand break through its apurinic/apyrimidinic lyase activity to initiate base excision repair.

View Article and Find Full Text PDF

In the last decade, several mouse models for RhoA, Rac1, and Cdc42 have emerged and have contributed a great deal to understanding the precise functions of Rho GTPases at early stages of development. This review summarizes our current knowledge of various mouse models of tissue-specific ablation of Cdc42, Rac1, and RhoA with emphasis on early embryogenesis, epithelial and skin morphogenesis, tubulogenesis, development of the central nervous system, and limb development.

View Article and Find Full Text PDF

Rho GTPases are molecular switches that modulate multiple intracellular signaling processes by means of various effector proteins. As a result, Rho GTPase activities are tightly spatiotemporally regulated in order to ensure homeostasis within the cell. Though the roles of Rho GTPases during neural development have been well documented, their participation during neurodegeneration has been far less characterized.

View Article and Find Full Text PDF

The chemotropic guidance cue netrin-1 mediates attraction of migrating axons during central nervous system development through the receptor Deleted in Colorectal Cancer (DCC). Downstream of netrin-1, activated Rho GTPases Rac1 and Cdc42 induce cytoskeletal rearrangements within the growth cone. The Rho guanine nucleotide exchange factor (GEF) Trio is essential for Rac1 activation downstream of netrin-1/DCC, but the molecular mechanisms governing Trio activity remain elusive.

View Article and Find Full Text PDF