Publications by authors named "Nathalie Ladouce"

A multi-tiered transcriptional network regulates xylem differentiation and secondary cell wall (SCW) formation in plants, with evidence of both conserved and lineage-specific SCW network architecture. We aimed to elucidate the roles of selected R2R3-MYB transcription factors (TFs) linked to Eucalyptus wood formation by identifying genome-wide TF binding sites and direct target genes through an improved DAP-seq protocol combined with machine learning for target gene assignment (DAP-seq-ML). We applied this to five TFs including a well-studied SCW master regulator (EgrMYB2; homolog of AtMYB83), a repressor of lignification (EgrMYB1; homolog of AtMYB4), a TF affecting SCW thickness and vessel density (EgrMYB137; homolog of PtrMYB074) and two TFs with unclear roles in SCW regulation (EgrMYB135 and EgrMYB122).

View Article and Find Full Text PDF

Eucalypts are the most planted hardwoods worldwide. The availability of the genome highlighted many genes awaiting functional characterization, lagging behind because of the lack of efficient genetic transformation protocols. In order to efficiently generate knock-out mutants to study the function of eucalypts genes, we implemented the powerful CRISPR/Cas9 gene editing technology with the hairy roots transformation system.

View Article and Find Full Text PDF

Eucalypts are the most planted trees worldwide, but most of them are frost sensitive. Overexpressing transcription factors for CRT-repeat binding factors () in transgenic confer cold resistance both in leaves and stems. While wood plays crucial roles in trees and is affected by environmental cues, its potential role in adaptation to cold stress has been neglected.

View Article and Find Full Text PDF

Although eucalypts are the most planted hardwood trees worldwide, the majority of them are frost sensitive. The recent creation of frost-tolerant hybrids such as Eucalyptus gundal plants (E. gunnii × E.

View Article and Find Full Text PDF

Annotation of the Eucalyptus grandis genome showed a large amplification of the dehydration-responsive element binding 1/C-repeat binding factor (DREB1/CBF) group without recent DREB2 gene duplication compared with other plant species. The present annotation of the CBF and DREB2 genes from a draft of the Eucalyptus gunnii genome sequence reveals at least one additional CBF copy in the E. gunnii genome compared with E.

View Article and Find Full Text PDF

Comparative phylogenetic analyses of the R2R3-MYB transcription factor family revealed that five subgroups were preferentially found in woody species and were totally absent from Brassicaceae and monocots (Soler et al., 2015). Here, we analyzed one of these subgroups (WPS-I) for which no gene had been yet characterized.

View Article and Find Full Text PDF

Eucalyptus are of tremendous economic importance being the most planted hardwoods worldwide for pulp and paper, timber and bioenergy. The recent release of the Eucalyptus grandis genome sequence pointed out many new candidate genes potentially involved in secondary growth, wood formation or lineage-specific biosynthetic pathways. Their functional characterization is, however, hindered by the tedious, time-consuming and inefficient transformation systems available hitherto for eucalypts.

View Article and Find Full Text PDF

Essential oil from Gaultheria procumbens is mainly composed of methylsalicylate (MeSA) (>96%), a compound which can be metabolized in plant tissues to salicylic acid, a phytohormone inducing plant immunity against microbial pathogens. The potential use of G. procumbens essential oil as a biocontrol agent was evaluated on the model plant Arabidopsis thaliana.

View Article and Find Full Text PDF

The cellulose binding elicitor lectin (CBEL) of the genus Phytophthora induces necrosis and immune responses in several plant species, including Arabidopsis thaliana. However, the role of CBEL-induced responses in the outcome of the interaction is still unclear. This study shows that some of CBEL-induced defence responses, but not necrosis, required the receptor-like kinase BAK1, a general regulator of basal immunity in Arabidopsis, and the production of a reactive oxygen burst mediated by respiratory burst oxidases homologues (RBOH).

View Article and Find Full Text PDF

Interest in the genomics of Eucalyptus has skyrocketed thanks to the recent sequencing of the genome of Eucalyptus grandis and to a growing number of large-scale transcriptomic studies. Quantitative reverse transcription-PCR (RT-PCR) is the method of choice for gene expression analysis and can now also be used as a high-throughput method. The selection of appropriate internal controls is becoming of utmost importance to ensure accurate expression results in Eucalyptus.

View Article and Find Full Text PDF
Article Synopsis
  • - The EgMYB1 transcription factor from eucalyptus acts as a repressor and is mainly found in differentiating xylem, where it inhibits two important genes related to lignin production.
  • - To explore its function, researchers overexpressed the EgMYB1 gene in both Arabidopsis and poplar plants, observing significant phenotypic changes, particularly stronger effects in Arabidopsis.
  • - Results showed that EgMYB1 overexpression led to fewer lignified fibers and reduced thickening of secondary walls, along with lower lignin content and disrupted expression of key biosynthetic genes, suggesting that EgMYB1 plays a crucial role in regulating secondary wall formation.
View Article and Find Full Text PDF

Background: Renowned for their fast growth, valuable wood properties and wide adaptability, Eucalyptus species are amongst the most planted hardwoods in the world, yet they are still at the early stages of domestication because conventional breeding is slow and costly. Thus, there is huge potential for marker-assisted breeding programs to improve traits such as wood properties. To this end, the sequencing, analysis and annotation of a large collection of expressed sequences tags (ESTs) from genes involved in wood formation in Eucalyptus would provide a valuable resource.

View Article and Find Full Text PDF

Eucalyptus is one of the world's main sources of biomass. The genus includes species representing the principle hardwood trees used for pulp and paper. Here, we aimed to identify genes specifically expressed in differentiating secondary xylem compared with phloem.

View Article and Find Full Text PDF

To gain information concerning cell functions and activities during sunflower embryogenesis, an expressed sequence tag (EST) approach was used to analyse gene expression in the early stages of sunflower embryos development. Confocal microscopy observations of whole-mounted embryos allowed us to identify precisely the major steps of the zygotic embryonic development. A time-course analysis was then employed to collect the embryonic material.

View Article and Find Full Text PDF

Wood is the most abundant biological resource on earth and it is also an important raw material for a major global industry with rapidly increasing demand. The genus Eucalyptus includes the most widely used tree species for industrial plantation, mainly for making pulp and paper. With the aim of identifying major genes involved in wood formation in Eucalyptus , we have developed a targeted approach of functional genomics based on the isolation of xylem preferentially expressed genes by subtractive PCR.

View Article and Find Full Text PDF