Publications by authors named "Nathalie Kardos"

The use of high frequency ultrasound (800 kHz) highlights the non-radical character of the cis-cyclooctene epoxidation mediated by HO and HWO. Combination of moderate mixing brought by the ultrasonic irradiation with precise thermoregulation of the double jacketed sonoreactor demonstrates the potential of this technique for studying and optimizing all the reaction parameters. The results not only reveal that the optimized ultrasonic conditions lead to excellent epoxidation outcomes with 96% yield and 98% selectivity but also to higher selectivities toward the epoxidation product compared with silent conditions.

View Article and Find Full Text PDF

Over the past 15 years, sustainable chemistry has emerged as a new paradigm in the development of chemistry. In the field of organic synthesis, green chemistry rhymes with relevant choice of starting materials, atom economy, methodologies that minimize the number of chemical steps, appropriate use of benign solvents and reagents, efficient strategies for product isolation and purification and energy minimization. In that context, unconventional methods, and especially ultrasound, can be a fine addition towards achieving these green requirements.

View Article and Find Full Text PDF

In this proof of concept study, the advantageous properties of both H(2)O(2)/NaHCO(3)/imidazole/Mn(TPP)OAc oxidation system and MOPyrroNTf(2) ionic liquid have been combined under ultrasonic irradiation to give an exceptionally favorable environment for Mn(TPP)OAc catalyzed olefin oxidations. The results reveal the crucial role played by the ultrasonic irradiations that influence drastically the oxidation process. In MOPyrroNTf(2) and under ultrasonic irradiation, the mechanism probably involves an oxo-manganyl intermediate at the expense of the classical bicarbonate-activated peroxide route.

View Article and Find Full Text PDF

Carboxylic acids are promising candidates for new sustainable strategies in organic synthesis. In this paper, we ascertain the potential of ultrasound for the hydrolysis of nitriles into carboxylic acids through the study of key parameters of the reaction: pH, hydrolysis medium, reaction time and activation technique. The positive influence of ultrasound under basic conditions is due to more than mechanical effects of cavitation.

View Article and Find Full Text PDF