Publications by authors named "Nathalie Hinfray"

Azole fungicides are highly suspected endocrine disruptors (EDs) and are frequently detected in surface water. Among them, there are prochloraz (PCZ), a commonly used  molecule for ED studies, and imazalil (IMZ), a highly suspected ED. Little is known about their toxicokinetic (TK) behavior in fish.

View Article and Find Full Text PDF

Bisphenol A alternatives are manufactured as potentially less harmful substitutes of bisphenol A (BPA) that offer similar functionality. These alternatives are already in the market, entering the environment and thus raising ecological concerns. However, it can be expected that levels of BPA alternatives will dominate in the future, they are limited information on their environmental safety.

View Article and Find Full Text PDF

Computational analysis of bio-images by deep learning (DL) algorithms has made exceptional progress in recent years and has become much more accessible to non-specialists with the development of ready-to-use tools. The study of oogenesis mechanisms and female reproductive success has also recently benefited from the development of efficient protocols for three-dimensional (3D) imaging of ovaries. Such datasets have a great potential for generating new quantitative data but are, however, complex to analyze due to the lack of efficient workflows for 3D image analysis.

View Article and Find Full Text PDF

Transgenic zebrafish models are efficiently used to study the effects of endocrine disrupting chemicals (EDC); thereby informing on their mechanisms of action. However, given the reported differences between zebrafish strains at the genetical, physiological and behavioral levels; care should be taken before using these transgenic models for EDC testing. In the present study, we undertook a set of experiments in different transgenic and/or mutant zebrafish strains of interest for EDC testing: casper, cyp19a1a-eGFP, cyp19a1a-eGFP-casper, cyp11c1-eGFP, cyp11c1-eGFP-casper.

View Article and Find Full Text PDF

The environmental risk of natural and synthetic ligands of the nuclear progesterone receptor (nPR) has been pointed out, however there is still a lack of mechanistic information regarding their ability to interact with nuclear PR in aquatic species. To identify possible interspecies differences, we assessed in vitro the ability of manifold progestins to transactivate zebrafish (zf) and human (h) PRs, using two established reporter cell lines, U2OS-zfPR and HELN-hPR, respectively. Reference ligands highlighted some differences between the two receptors.

View Article and Find Full Text PDF

Transgenic fish are powerful models that can provide mechanistic information regarding the endocrine activity of test chemicals. In this study, our objective was to use a newly developed transgenic zebrafish line expressing eGFP under the control of the cyp19a1a promoter in the OECD Fish Short Term Reproduction Assay (TG 229) to provide additional mechanistic information on tested substances. For this purpose, we exposed adult transgenic zebrafish to a reference substance of the TG 229, i.

View Article and Find Full Text PDF

Comprehension of compound interactions in mixtures is of increasing interest to scientists, especially from a perspective of mixture risk assessment. However, most of conducted studies have been dedicated to the effects on gonads, while only few of them were. interested in the effects on the central nervous system which is a known target for estrogenic compounds.

View Article and Find Full Text PDF

In zebrafish, there exists a clear need for new tools to study sex differentiation dynamic and its perturbation by endocrine disrupting chemicals. In this context, we developed and characterized a novel transgenic zebrafish line expressing green fluorescent protein (GFP) under the control of the zebrafish cyp19a1a (gonadal aromatase) promoter. In most gonochoristic fish species including zebrafish, cyp19a1a, the enzyme responsible for the synthesis of estrogens, has been shown to play a critical role in the processes of reproduction and sexual differentiation.

View Article and Find Full Text PDF

The effects of some progestins on fish reproduction have been recently reported revealing the hazard of this class of steroidal pharmaceuticals. However, their effects at the central nervous system level have been poorly studied until now. Notwithstanding, progesterone, although still widely considered primarily a sex hormone, is an important agent affecting many central nervous system functions.

View Article and Find Full Text PDF

The present study was conducted to assess the effects of Cd exposure on estrogen signaling in the zebrafish brain, as well as the potential protective role of Zn against Cd-induced toxicity. For this purpose, the effects on transcriptional activation of the estrogen receptors (ERs), aromatase B (Aro-B) protein expression and molecular expression of related genes were examined in vivo using wild-type and transgenic zebrafish embryos. For in vitro studies, an ER-negative glial cell line (U251MG) transfected with different zebrafish ER subtypes (ERα, ERβ1 and ERβ2) was also used.

View Article and Find Full Text PDF

In zebrafish, the identification of the cells expressing steroidogenic enzymes and their regulators is far from completely fulfilled though it could provide crucial information on the elucidation of the role of these enzymes. The aim of this study was to better characterize the expression pattern of steroidogenic enzymes involved in estrogen and androgen production (Cyp17-I, Cyp11c1, Cyp19a1a and Cyp19a1b) and one of their regulators (Foxl2a) in zebrafish gonads. By using immunohistochemistry, we localized the steroid-producing cells in mature zebrafish gonads and determined different expression patterns between males and females.

View Article and Find Full Text PDF

Clotrimazole is an azole fungicide used as a human pharmaceutical that is known to inhibit cytochrome P450 (CYP) enzymatic activities, including several steroidogenic CYP. In a previous report, we showed that a 7-day exposure to clotrimazole induced the expression of genes related to steroidogenesis in the testes as a compensatory response, involving the activation of the Fsh/Fshr pathway. In this context, the aim of the present study was to assess the effect of an in vivo 21-day chronic exposure to clotrimazole (30-197 μg/L) on zebrafish testis function, i.

View Article and Find Full Text PDF

Oestrogens can affect expression of genes encoding steroidogenic enzymes in fish gonads. However, little information is available on their effects at the protein level. In this context, we first analysed the expression of key steroidogenic enzyme genes and proteins in zebrafish testis, paying attention also to other cell types than Leydig cells.

View Article and Find Full Text PDF

Clotrimazole is a pharmaceutical fungicide known to inhibit several cytochrome P450 enzyme activities, including several steroidogenic enzymes. This study aimed to assess short-term in vivo effects of clotrimazole exposure on blood 11-ketotestosterone (11-KT) levels and on the transcriptional activity of genes in pituitary and testis tissue that are functionally relevant for androgen production with the view to further characterize the mode of action of clotrimazole on the hypothalamus-pituitary-gonad axis in zebrafish, a model vertebrate in toxicology. Adult male zebrafish were exposed to measured concentrations in water of 71, 159 and 258μg/L of clotrimazole for 7 days.

View Article and Find Full Text PDF

The aim of the present study was to characterize P450 17α-hydroxylase/17,20-lyase (cyp17a1) expression in zebrafish and to assess the effect of the pharmaceutical clotrimazole, a known inhibitor of various cytochrome P450 enzyme activities, on testicular gene and protein expression of this enzyme as well as on the testicular release of 11-ketotestosterone (11-KT), a potent androgen in fish. We first showed that cyp17a1 is predominantly expressed in gonads of zebrafish, notably in male. In vivo, clotrimazole induced a concentration-dependent increase of cyp17a1 gene expression and Cyp17-I protein synthesis in zebrafish testis.

View Article and Find Full Text PDF

P450 aromatase catalyses the conversion of C19 androgens to C18 estrogens which is thought to be essential for the regulation of the reproductive function. In this study, brain aromatase activity (AA) was measured monthly over a reproductive cycle in wild roach (Rutilus rutilus) sampled in a reference site in Normandy. AA peaked during the breeding season, reaching 35 fmol mg(-1)min(-1) in both male and female fish, and was low during the rest of the year except for a significant rise in October.

View Article and Find Full Text PDF

A set of biochemical and histological responses was measured in wild gudgeon collected upstream and downstream of urban and pharmaceutical manufacture effluents. These individual end-points were associated to fish assemblage characterisation. Responses of biotransformation enzymes, neurotoxicity and endocrine disruption biomarkers revealed contamination of investigated stream by a mixture of pollutants.

View Article and Find Full Text PDF

There is growing evidence that neuroendocrine circuits controlling development and reproduction are targeted by EDCs. We have previously demonstrated that low concentrations of 17α-ethinylestradiol (EE2) disrupt the development of forebrain GnRH neurons during zebrafish development. The objectives of the present study were to determine whether the weak estrogenic compound, nonylphenol (NP), could elicit similar effects to EE2 and to what extent the estrogen receptors are involved in mediating these effects.

View Article and Find Full Text PDF
Article Synopsis
  • The study evaluated endocrine disruption in wild fish across five French rivers during summer and fall, focusing on biometrical, biochemical, and histological markers in chub fish.
  • At the reference site, fish showed low levels of endocrine disruption markers, while the Jalle d'Eysines River exhibited the most significant impact, with notable estrogenic exposure effects on male fish.
  • Overall, the research highlights that certain biomarkers, such as aromatase activity, can effectively indicate endocrine disruption in natural water systems.
View Article and Find Full Text PDF

Androgens can induce complete spermatogenesis in immature or prepubertal teleost fish. However, many aspects of the role of androgens in adult teleost spermatogenesis have remained elusive. Since oestrogens inhibit androgen synthesis, we used an oestrogen-induced androgen depletion model to identify androgen-dependent stages during adult zebrafish spermatogenesis.

View Article and Find Full Text PDF

Many endocrine-disrupting chemicals act via estrogen receptor (ER) or aryl hydrocarbon receptor (AhR). To investigate the interference between ER and AhR, we studied the effects of 17beta-estradiol (E2) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on the expression of zebra fish cyp19a (zfcyp19a) and cyp19b (zfcyp19b) genes, encoding aromatase P450, an important steroidogenic enzyme. In vivo (mRNA quantification in exposed zebra fish larvae) and in vitro (activity of zfcyp19-luciferase reporter genes in cell cultures in response to chemicals and zebra fish transcription factors) assays were used.

View Article and Find Full Text PDF

Aromatase, a key steroidogenic enzyme that catalyses the conversion of androgens to estrogens, represent a target for endocrine disrupting chemicals. However, little is known about the effect of pollutants on aromatase enzymes in fish. In this study, we first optimized a rainbow trout (Oncorhynchus mykiss) microsomal aromatase assay to measure the effects of 43 substances belonging to diverse chemical classes (steroidal and non steroidal aromatase inhibitors, pesticides, heavy metals, organotin compounds, dioxins, polycyclic aromatic hydrocarbons) on brain and ovarian aromatase activities in vitro.

View Article and Find Full Text PDF

Aromatase enzyme plays a central role in steroidogenesis by converting androgens to estrogens and has been proposed as an important molecular target for many environmental endocrine disrupters chemicals. In this study, we have screened 30 selected pesticides with known, unknown or supposed effects on aromatase activity, for their ability to modulate aromatase activity in the human choriocarcinoma JEG-3 cell line after both short (2 h) and long exposure (24 h). All pesticides were tested at concentrations up to 10 microM that did not cause cytotoxicity after 24h of exposure, as verified by the MTT viability assay.

View Article and Find Full Text PDF