Publications by authors named "Nathalie Fenner"

The interaction between nitrogen storage and translocation, senescence, and late phase photosynthesis is critical to the post-anthesis grain fill period in wheat, but ozone's effect on nitrogen dynamics within the wheat plant is not well understood. This study used solardomes to expose a widely grown elite spring wheat cultivar, cv. Skyfall, to four levels of ozone (30 ppb, 45 ppb, 70 ppb, 85 ppb) for 11 weeks, with two levels of nitrogen fertilization, 140 kg ha and 160 kg ha, the higher rate including an additional 20 kg N ha at anthesis.

View Article and Find Full Text PDF

Nitrogen deposition and tropospheric ozone are important drivers of vegetation damage, but their interactive effects are poorly understood. This study assessed whether long-term nitrogen deposition altered sensitivity to ozone in a semi-natural vegetation community. Mesocosms were collected from sand dune grassland in the UK along a nitrogen gradient (5-25 kg N/ha/y, including two plots from a long-term experiment), and fumigated for 2.

View Article and Find Full Text PDF

Modern wheat cultivars are increasingly sensitive to ground level ozone, with 7-10% mean yield reductions in the northern hemisphere. In this study, three of the genome donors of bread wheat, (AA), (AABB), and (DD) along with a modern wheat cultivar ( 'Skyfall'), a 1970s cultivar ( 'Maris Dove'), and a line of primary Synthetic Hexaploid Wheat were grown in 6 L pots of sandy loam soil in solardomes (Bangor, North Wales) and exposed to low (30 ppb), medium (55 ppb), and high (110 ppb) levels of ozone over 3 months. Measurements were made at harvest of shoot biomass and grain yield.

View Article and Find Full Text PDF

Chlorination of drinking water protects humans from water-born pathogens, but it also produces low concentrations of dibromoacetonitrile (DBAN), a common disinfectant by-product found in many water supply systems. DBAN is not mutagenic but causes DNA breaks and elevates sister chromatid exchange in mammalian cells. The WHO issued guidelines for DBAN after it was linked with cancer of the liver and stomach in rodents.

View Article and Find Full Text PDF

Peat represents a globally significant pool of sequestered carbon. However, peatland carbon stocks are highly threatened by anthropogenic climate change, including drought, which leads to a large release of carbon dioxide. Although the enzymatic mechanisms underlying drought-driven carbon release are well documented, the effect of drought on peatland microbial communities has been little studied.

View Article and Find Full Text PDF

Drained peatland catchments are reported to produce more colored, dissolved organic carbon (DOC)-rich water, presenting problems for potable water treatment. The blocking of peatland drainage ditches to restore the water table is increasingly being considered as a strategy to address this deterioration in water quality. However, the effect of ditch blocking on the potential of DOC to form trihalomethanes (THMs) has not been assessed.

View Article and Find Full Text PDF

Dune slacks are seasonal wetlands, high in biodiversity, which experience considerable within-year and between-year variations in water-table. They are subject to many pressures including climate change, land use change and eutrophication. Despite their biological importance and the threats facing them, the hydrological and nutrient parameters that influence their soil properties and biodiversity are poorly understood and there have been no empirical studies to date testing for biological effects in dune systems resulting from groundwater nutrients at low concentrations.

View Article and Find Full Text PDF

Absorbance in the UV or visible spectrum (UV-vis) is commonly used as a proxy for DOC concentrations in waters draining upland catchments. To determine the appropriateness of different UV-vis measurements we used surface and pore water samples from two Welsh peatlands in four different experiments: (i) an assessment of single wavelength proxies (1 nm increments between 230-800 nm) for DOC concentration demonstrated that 254 nm was more accurate than 400 nm. The highest R(2) values between absorbance and DOC concentration were generated using 263 nm for one sample set (R(2) = 0.

View Article and Find Full Text PDF

Peatland catchments store vast amounts of carbon. Humic lakes and pools are the primary receptacles for terrigenous carbon in these meta-ecosystems, representing sequestration hotspots; boreal lakes alone store ca. 120 Pg C.

View Article and Find Full Text PDF

Terrestrial and oceanic ecosystems contribute almost equally to the sequestration of ca 50 per cent of anthropogenic CO(2) emissions, and already play a role in minimizing our impact on Earth's climate. On land, the majority of the sequestered carbon enters soil carbon stores. Almost one-third of that soil carbon can be found in peatlands, an area covering just 2-3% of the Earth's landmass.

View Article and Find Full Text PDF

Natural moisture limitation during summer drought can constitute a stress for microbial communities in soil. Given globally predicted increases in drought frequency, there is an urgent need for a greater understanding of the effects of drought events on soil microbial processes. Using a long-term field-scale drought manipulation experiment at Clocaenog, Wales, UK, we analysed fungal community dynamics, using internal transcribed spacer-denaturing gradient gel electrophoresis (DGGE), over a 1-year period in the 6th year of drought manipulation.

View Article and Find Full Text PDF

Peatlands export more dissolved organic carbon (DOC) than any other biome, contributing 20% of all terrestrial DOC exported to the oceans. Both warming and elevated atmospheric CO2 (eCO2) can increase DOC exports, but their interaction is poorly understood. Peat monoliths were, therefore, exposed to eCO2, warming and eCO2 + warming (combined).

View Article and Find Full Text PDF

Peat bogs have historically represented exceptional carbon (C) sinks because of their extremely low decomposition rates and consequent accumulation of plant remnants as peat. Among the factors favoring that peat accumulation, a major role is played by the chemical quality of plant litter itself, which is poor in nutrients and characterized by polyphenols with a strong inhibitory effect on microbial breakdown. Because bogs receive their nutrient supply solely from atmospheric deposition, the global increase of atmospheric nitrogen (N) inputs as a consequence of human activities could potentially alter the litter chemistry with important, but still unknown, effects on their C balance.

View Article and Find Full Text PDF

Wetlands play a key role in global biogeochemical cycles, and as such, the effects of global climatic changes on these systems are of great importance. In this study, we assessed impacts of elevated CO(2) on soil enzyme activities in different types of wetlands. We hypothesised that elevated CO(2), by increasing DOC supply into the soil, would modify enzyme activities.

View Article and Find Full Text PDF