Publications by authors named "Nathalie Eynard"

Recent studies have shown that not only resistance, but also tolerance/persistence levels can evolve rapidly in bacteria exposed to repeated antibiotic treatments. We used evolution to assess whether tolerant/hyperpersistent ATCC25922 mutants could be selected under repeated exposure to a high ciprofloxacin concentration. Among two out of three independent evolution lines, we observed the emergence of mutants showing an hyperpersistence phenotype specific to fluoroquinolones, but no significant MIC increase.

View Article and Find Full Text PDF

Mycobacterium tuberculosis is the etiological agent of tuberculosis (TB), one of the deadliest infectious diseases. The alarming health context coupled with the emergence of resistant M. tuberculosis strains highlights the urgent need to expand the range of anti-TB antibiotics.

View Article and Find Full Text PDF

The fatty acid synthase type II (FAS-II) multienzyme system builds the main chain of mycolic acids (MAs), important lipid pathogenicity factors of Mycobacterium tuberculosis (Mtb). Due to their original structure, the identification of the (3 R)-hydroxyacyl-ACP dehydratases, HadAB and HadBC, of Mtb FAS-II complex required in-depth work. Here, we report the discovery of a third dehydratase protein, HadD (Rv0504c), whose gene is non-essential and sits upstream of cmaA2 encoding a cyclopropane synthase dedicated to keto- and methoxy-MAs.

View Article and Find Full Text PDF

Mycolic acids (MAs) have a strategic location within the mycobacterial envelope, deeply influencing its architecture and permeability, and play a determinant role in the pathogenicity of mycobacteria. The fatty acid synthase type II (FAS-II) multienzyme system is involved in their biosynthesis. A combination of pull-downs and proteomics analyses led to the discovery of a mycobacterial protein, HadD, displaying highly specific interactions with the dehydratase HadAB of FAS-II.

View Article and Find Full Text PDF

Mycolic acids are essential components of the mycobacterial cell envelope, and their biosynthetic pathway is a well known source of antituberculous drug targets. Among the promising new targets in the pathway, FadD32 is an essential enzyme required for the activation of the long meromycolic chain of mycolic acids and is essential for mycobacterial growth. Following the in-depth biochemical, biophysical, and structural characterization of FadD32, we investigated its putative regulation via post-translational modifications.

View Article and Find Full Text PDF
Article Synopsis
  • * FadD32, a key enzyme in this pathway necessary for mycobacterial growth, has recently been identified as a potential target for drug development.
  • * The study provides detailed biochemical and structural insights into FadD32, revealing its active site and mechanisms of inhibition, which could inform the design of new inhibitors against tuberculosis.
View Article and Find Full Text PDF

Gram positive mycobacteria with a high GC content, such as the etiological agent of tuberculosis Mycobacterium tuberculosis, possess an outer membrane mainly composed of mycolic acids (MAs), the so-called mycomembrane, which is essential for the cell. About thirty genes are involved in the biosynthesis of MAs, which include the hadA, hadB and hadC genes that encode the dehydratases Fatty Acid Synthase type II (FAS-II) known to function as the heterodimers HadA-HadB and HadB-HadC. The present study shows that M.

View Article and Find Full Text PDF

Understanding the molecular strategies used by Mycobacterium tuberculosis to invade and persist within the host is of paramount importance to tackle the tuberculosis pandemic. Comparative genomic surveys have revealed that hadC, encoding a subunit of the HadBC dehydratase, is mutated in the avirulent M. tuberculosis H37Ra strain.

View Article and Find Full Text PDF

Isoxyl and Thiacetazone are two antitubercular prodrugs formerly used in the clinical treatment of tuberculosis. Although both prodrugs have recently been shown to kill through the inhibition of the dehydration step of the type II fatty acid synthase pathway, their detailed mechanism of inhibition, the precise number of enzymes involved in their activation and the nature of their activated forms remained unknown. We here demonstrate that both Isoxyl and Thiacetazone specifically and covalently react with a cysteine residue (Cys61) of the HadA subunit of the dehydratase thereby inhibiting HadAB activity.

View Article and Find Full Text PDF

The nurse's main mission in a medical-social support centre for disabled adults is to promote the health of the mentally disabled person, offering them a care approach which respects the framework of their life project. To do that, it is essential to support the person in a global care approach, the pillars of which are regained awareness of the forgotten body and a positioning as a player in their own health.

View Article and Find Full Text PDF

FadD32, a fatty acyl-AMP ligase (FAAL32) involved in the biosynthesis of mycolic acids, major and specific lipid components of the mycobacterial cell envelope, is essential for the survival of Mycobacterium tuberculosis, the causative agent of tuberculosis. The protein catalyzes the conversion of fatty acid to acyl-adenylate (acyl-AMP) in the presence of adenosine triphosphate and is conserved in all the mycobacterial species sequenced so far, thus representing a promising target for the development of novel antituberculous drugs. Here, we describe the optimization of the protein purification procedure and the development of a high-throughput screening assay for FadD32 activity.

View Article and Find Full Text PDF

Mycolic acids, very long-chain α-alkyl, β-hydroxylated fatty acids, occur in the members of the order Corynebacteriales where their chain lengths (C(26)-C(88)) and structural features (oxygen functions, cis or trans double bonds, cyclopropane rings and methyl branches) are genus- and species-specific. The molecular composition and structures of the mycolic acids of two species belonging to the genus Segniliparus were determined by a combination of modern analytical chemical techniques, which include MS and NMR. They consist of mono-ethylenic C(62-)C(64) (α'), di-ethylenic C(77)-C(79) (α) and extremely long-chain mycolic acids (α(+)) ranging from 92 to 98 carbon atoms and containing three unsaturations, cis and/or trans double bonds and/or cyclopropanes.

View Article and Find Full Text PDF

Corynebacterineae are characterized by the presence of long-chain lipids, notably mycolic acids (α-alkyl, β-hydroxy fatty acids), the structures of which are genus-specific. Mycolic acids from two environmental strains, Amycolicicoccus subflavus and Hoyosella altamirensis, were isolated and their structures were established using a combination of mass spectrometry analysis, (1)H-NMR spectroscopy and chemical degradations. The C(2)-C(3) cleavage of these C(30)-C(36) acids led to the formation of two fragments: saturated C(9)-C(11) acids, and saturated and unsaturated C(20)-C(25) aldehydes.

View Article and Find Full Text PDF

The type II fatty acid synthase system of mycobacteria is involved in the biosynthesis of major and essential lipids, mycolic acids, key-factors of Mycobacterium tuberculosis pathogenicity. One reason of the remarkable survival ability of M. tuberculosis in infected hosts is partly related to the presence of cell wall-associated mycolic acids.

View Article and Find Full Text PDF

The fatty acid synthase type II enzymatic complex of Mycobacterium tuberculosis (FAS-II(Mt)) catalyzes an essential metabolic pathway involved in the biosynthesis of major envelope lipids, mycolic acids. The partner proteins of this singular FAS-II system represent relevant targets for antituberculous drug design. Two heterodimers of the hydratase 2 protein family, HadAB and HadBC, were shown to be involved in the (3R)-hydroxyacyl-ACP dehydration (HAD) step of FAS-II(Mt) cycles.

View Article and Find Full Text PDF

The Mycobacterium tuberculosis fatty acid synthase type II (FAS-II) system has the unique property of producing unusually long-chain fatty acids involved in the biosynthesis of mycolic acids, key molecules of the tubercle bacillus. The enzyme(s) responsible for dehydration of (3R)-hydroxyacyl-ACP during the elongation cycles of the mycobacterial FAS-II remained unknown. This step is classically catalyzed by FabZ- and FabA-type enzymes in bacteria, but no such proteins are present in mycobacteria.

View Article and Find Full Text PDF

The (R)-specific 3-hydroxyacyl dehydratases/trans-enoyl hydratases are key proteins in the biosynthesis of fatty acids. In mycobacteria, such enzymes remain unknown, although they are involved in the biosynthesis of major and essential lipids like mycolic acids. First bioinformatic analyses allowed to identify a single candidate protein, namely Rv3389c, that belongs to the hydratases 2 family and is most likely made of a distinctive asymmetric double hot dog fold.

View Article and Find Full Text PDF

Dysfunctions of the serotonergic system are implicated in psychiatric disorders, and there is evidence that a familial element may be significant in childhood autism. The concentrations of platelet 5-HT and free and total plasma tryptophan were determined in healthy pregnant women at each month of pregnancy and, at delivery, in both maternal and umbilical cord blood. A significant rise in the level of platelet 5-HT occured during month 3 and 4 followed by a retum to normal from month 5 until the delivery.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionrqh3qocgljku2aqa4snp0o0iomnsvbth): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once