Aims: During pregnancy, there is a significant increase in heart rate (HR) potentially associated with an increased risk of arrhythmias or exacerbation of pre-existing cardiac conditions endangering both mother and foetus. Calcium homeostasis plays an important role in regulating automaticity of the sinoatrial node (SAN); however, its contribution to the accelerated HR during pregnancy remains unknown.
Methods And Results: Using murine SAN cells, we showed that pregnancy increased L-type Ca2+ current (ICaL) and CaV1.
Background: Long-QT syndrome is a potentially fatal condition for which 30% of patients are without a genetically confirmed diagnosis. Rapid identification of causal mutations is thus a priority to avoid at-risk situations that can lead to fatal cardiac events. Massively parallel sequencing technologies are useful for the identification of sequence variants; however, electrophysiological testing of newly identified variants is crucial to demonstrate causality.
View Article and Find Full Text PDFBackground: Pregnancy is associated with a faster heart rate (HR), which is a risk factor for arrhythmias. However, the underlying mechanisms for this increased HR are poorly understood. Therefore, this study was performed to gain mechanistic insight into the pregnancy-induced increase in HR.
View Article and Find Full Text PDFIn the current model of gamma-aminobutyric acid (GABA) B receptor function, there is a requirement for GABA-B(1/2) heterodimerisation for targetting to the cell surface. However, different lines of evidence suggest that the GABA-B(1) subunit can form a functional receptor in the absence of GABA-B(2). We observed coupling of endogenous GABA-B(1) receptors in the DI-TNC1 glial cell line to the ERK pathway in response to baclofen even though these cells do not express GABA-B(2).
View Article and Find Full Text PDFResveratrol (RES; trans-3,5,4'-trihydroxystilbene) has been shown to improve health and slow the progression of disease in various models. Several cardioprotective mechanisms have been identified including antioxidant, anti-inflammatory, and antifibrotic actions. Each of these actions is thought to have the ability to attenuate the pathophysiology underlying the deleterious cardiac structural remodeling that results from acute myocardial infarction (MI).
View Article and Find Full Text PDFHeterotrimeric G proteins play a central role in intracellular communication mediated by extracellular signals, and both Galpha and Gbetagamma subunits regulate effectors downstream of activated receptors. The particular constituents of the G protein heterotrimer affect both specificity and efficiency of signal transduction. However, little is known about mechanistic aspects of G protein assembly in the cell that would certainly contribute to formation of heterotrimers of specific composition.
View Article and Find Full Text PDFWe have previously demonstrated that adenylyl cyclase II (ACII) interacts with beta2-adrenergic receptors and heterotrimeric G proteins as part of a pre-assembled signalling complex. In this study, we further show that AC interacts with these proteins before it is targetted to the cell surface. Using a combination of approaches including bioluminescence resonance energy transfer (BRET) in concert with subcellular fractionation, we show that ACII and beta2AR initially interact in the ER.
View Article and Find Full Text PDFMuch is known about beta2-adrenergic receptor trafficking and internalization following prolonged agonist stimulation. However, less is known about outward trafficking of the beta2-adrenergic receptor to the plasma membrane or the role that trafficking might play in the assembly of receptor signaling complexes, important for targeting, specificity, and rapidity of subsequent signaling events. Here, by using a combination of bioluminescence resonance energy transfer, bimolecular fluorescence complementation, and confocal microscopy, we evaluated the steps in the formation of the core receptor-G protein heterotrimer complex.
View Article and Find Full Text PDFBioluminescence resonance energy transfer (BRET) and co-immunoprecipitation experiments revealed that heterotrimeric G proteins and their effectors were found in stable complexes that persisted during signal transduction. Adenylyl cyclase, Kir3.1 channel subunits and several G-protein subunits (Galpha(s), Galpha(i), Gbeta(1) and Ggamma(2)) were tagged with luciferase (RLuc) or GFP, or the complementary fragments of YFP (specifically Gbeta(1)-YFP(1-158) and Ggamma(2)-YFP(159-238), which heterodimerize to produce fluorescent YFP-Gbeta(1)gamma(2)).
View Article and Find Full Text PDFObjective: We sought to determine if different beta-adrenergic receptor (betaAR) subtypes, and their associated signalling machinery, are functionally localized to nuclear membranes.
Methods: Employing enriched nuclear preparations, we assayed the specific presence of betaAR by measuring 125I-cyanopindolol (CYP) binding, Western blotting, confocal microscopy and functional assays.
Results: Western blots of rat heart nuclear fractions and confocal immunofluorescent analysis of adult rat and mouse ventricular cardiomyocytes displayed the presence of beta 1AR and beta 3AR but, surprisingly, not the beta 2AR on nuclear membranes.
Cardiac repolarization is under joint control of the slow (IKs) and rapid (IKr) delayed rectifier currents. Experimental and clinical evidence indicates important functional interactions between these components. We hypothesized that there might be more direct interactions between the KvLQT1 and HERG alpha-subunits of IKs and IKr and tested this notion with a combination of biophysical and biochemical techniques.
View Article and Find Full Text PDFA large number of studies have demonstrated co-purification or co-immunoprecipitation of receptors with G proteins. We have begun to look for the presence of effector molecules in these receptor complexes. Co-expression of different channel and receptor permutations in COS-7 and HEK 293 cells in combination with co-immunoprecipitation experiments established that the dopamine D(2) and D(4), and beta(2)-adrenergic receptors (beta(2)-AR) form stable complexes with Kir3 channels.
View Article and Find Full Text PDF