Publications by authors named "Nathalie Dom"

Microarrays are an ideal tool to screen for differences in gene expression of thousands of genes simultaneously. However, often commercial arrays are not available. In this study, we performed microarray analyses to evaluate patterns of gene transcription following exposure to two natural and one anthropogenic stressor.

View Article and Find Full Text PDF

This study addresses the question whether hydrophobic organic chemicals exerting no toxicity at their solubility limit (saturation) can form a toxic mixture. Spiking methods generally do not allow testing exactly at saturation without introducing microcrystals. Passive dosing was thus applied to test the acute toxicity of several high melting point PAHs and their mixtures at the respective saturation levels to aquatic and terrestrial invertebrates.

View Article and Find Full Text PDF

In this study, it was illustrated that even for certain simple organic compounds with a designated mode of action (MOA) (i.e. narcotic toxicity) unexpected differences in acute and chronic toxicity can be observed.

View Article and Find Full Text PDF

The present study was developed to assess the chronic toxicity predictions and extrapolations for a set of chlorinated anilines (aniline (AN), 4-chloroaniline (CA), 3,5-dichloroaniline (DCA) and 2,3,4-trichloroaniline (TCA)). Daphnia magna 21 d chronic experimental data was compared to the chronic toxicity predictions made by the US EPA ECOSAR QSAR tools and to acute-to-chronic extrapolations. Additionally, Species Sensitivity Distributions (SSDs) were constructed to assess the chronic toxicity variability among different species and to investigate the acute versus chronic toxicity in a multi-species context.

View Article and Find Full Text PDF
Article Synopsis
  • Structural analogues are thought to have similar toxic effects based on their modes of action, but this study found that chemical similarity does not guarantee comparable toxicity or biological responses.
  • Researchers investigated the toxic effects of alcohols and anilines at various biological levels—gene transcription, energy reserves, and growth—and found that classification based on these responses did not align with existing MOA categories.
  • The study suggests that using integrated biological assessments, particularly transcriptomics, can improve environmental risk assessments by providing a more accurate understanding of how these chemicals affect organisms.
View Article and Find Full Text PDF

In this study, gene transcription profiling in combination with the assessment of systemic parameters at individual and population levels were applied to study the (toxic) effects induced through temperature stress in the presence or the absence of an additional chemical stressor (nickel) in Daphnia magna. It was illustrated that lower temperatures were mainly characterized by a reduction of growth and lipid content, while higher temperatures caused an increase of both endpoints. Many of the differentially regulated transcripts could be correlated with processes affected at higher hierarchical levels of biological organization.

View Article and Find Full Text PDF

Polar narcotic structural analogues (e.g., chlorinated anilines with a differing degree of chlorosubstitution, such as aniline, 4-chloroaniline, 3,5-dichloroaniline, and 2,3,4-trichloroaniline) are assumed to induce their toxic effects via the same predominant mode of action (MOA; membrane damage) at equitoxic exposure concentrations.

View Article and Find Full Text PDF

Aquatic toxicity information is essential in environmental risk assessment to determine the potential hazards and risks of new and existing chemicals. Prediction and modelling techniques, such as quantitative structure activity relationships (QSAR) and species sensitivity distributions (SSDs), are applied to fill data gaps and to predict, assess and extrapolate the toxicity of chemicals. In this study, both techniques (i.

View Article and Find Full Text PDF

The risk assessment of hydrophobic organic compounds (HOCs) in aquatic toxicity or bioconcentration tests is a challenge due to their low aqueous solubilities, sorption and losses leading to poorly defined exposure and reduced test sensitivity. Passive dosing overcomes these problems via the continual partitioning of HOCs from a dominating reservoir loaded in a biocompatible polymer such as silicone, providing defined and constant freely dissolved concentrations and eliminating spiking with co-solvents. This study characterised the performance of a passive dosing format for aquatic tests with small organism such as invertebrates and algae, consisting of PDMS silicone cast into the base of the glass test vessel.

View Article and Find Full Text PDF

Daphnia are an important and widely studied model species in ecological and toxicological studies throughout the world and an official (OECD) recommended test organism. Their small size, wide distribution and easy growth conditions make this organism ideal for functional genomics based studies, including metabolic profiling and transcriptomics. In this study we used an integrated systems approach in which transcriptomic, metabolomic and energetic responses of juvenile (4days old) daphnids were evaluated in response to exposure to two poly aromatic hydrocarbons (pyrene and fluoranthene) and binary mixtures thereof.

View Article and Find Full Text PDF