Publications by authors named "Nathalie Chantret"

Oryza sativa (rice) plays an essential food security role for more than half of the world's population. Obtaining crops with high levels of disease resistance is a major challenge for breeders, especially today, given the urgent need for agriculture to be more sustainable. Plant resistance genes are mainly encoded by three large leucine-rich repeat (LRR)-containing receptor (LRR-CR) families: the LRR-receptor-like kinase (LRR-RLK), LRR-receptor-like protein (LRR-RLP) and nucleotide-binding LRR receptor (NLR).

View Article and Find Full Text PDF

Most genomic and evolutionary comparative analyses rely on accurate multiple sequence alignments. With their underlying codon structure, protein-coding nucleotide sequences pose a specific challenge for multiple sequence alignment. Multiple Alignment of Coding Sequences (MACSE) is a multiple sequence alignment program that provided the first automatic solution for aligning protein-coding gene datasets containing both functional and nonfunctional sequences (pseudogenes).

View Article and Find Full Text PDF

Because of their high level of diversity and complex evolutionary histories, most studies on plant receptor-like kinase subfamilies have focused on their kinase domains. With the large amount of genome sequence data available today, particularly on basal land plants and Charophyta, more attention should be paid to primary events that shaped the diversity of the RLK gene family. We thus focus on the motifs and domains found in association with kinase domains to illustrate their origin, organization, and evolutionary dynamics.

View Article and Find Full Text PDF

Plant cell walls play a fundamental role in several plant traits and also influence crop use as livestock nutrition or biofuel production. The Glycosyltransferase family 61 (GT61) is involved in the synthesis of cell wall xylans. In grasses (Poaceae), a copy number expansion was reported for the GT61 family, and raised the question of the evolutionary history of this gene family in a broader taxonomic context.

View Article and Find Full Text PDF
Article Synopsis
  • Multiple sequence alignment is essential for evolutionary studies, and MACSE is a specialized program for aligning protein-coding nucleotide sequences.
  • MACSE v2 improves the original algorithm, allowing for the alignment of codons even with frameshifts present in the sequences.
  • The new version includes a user-friendly graphical interface and a full toolkit for handling various aspects of protein-coding sequence alignments.
View Article and Find Full Text PDF
Article Synopsis
  • Oaks are important trees that have been helpful to humans for a very long time, providing food and shelter.
  • There are about 450 species of oaks around the world, and they can live for hundreds of years, which is why they hold cultural significance.
  • Researchers studied the oak genome to understand why they live so long and found that they can have different genetic traits that help them resist diseases over their long lives.
View Article and Find Full Text PDF

Domestication is known to strongly reduce genomic diversity through population bottlenecks. The resulting loss of polymorphism has been thoroughly documented in numerous cultivated species. Here we investigate the impact of domestication on the diversity of alternative transcript expressions using RNAseq data obtained on cultivated and wild sorghum accessions (ten accessions for each pool).

View Article and Find Full Text PDF

genes represent a large and complex gene family in plants, mainly involved in development and stress responses. These receptors are composed of an LRR-containing extracellular domain (ECD), a transmembrane domain (TM) and an intracellular kinase domain (KD). To provide new perspectives on functional analyses of these genes in model and non-model plant species, we performed a phylogenetic analysis on 8,360 LRR-RLK receptors in 31 angiosperm genomes (8 monocots and 23 dicots).

View Article and Find Full Text PDF

We produced a unique large data set of reference transcriptomes to obtain new knowledge about the evolution of plant genomes and crop domestication. For this purpose, we validated a RNA-Seq data assembly protocol to perform comparative population genomics. For the validation, we assessed and compared the quality of de novo Illumina short-read assemblies using data from two crops for which an annotated reference genome was available, namely grapevine and sorghum.

View Article and Find Full Text PDF

Local climatic conditions likely constitute an important selective pressure on genes underlying important fitness-related traits such as flowering time, and in many species, flowering phenology and climatic gradients strongly covary. To test whether climate shapes the genetic variation on flowering time genes and to identify candidate flowering genes involved in the adaptation to environmental heterogeneity, we used a large Medicago truncatula core collection to examine the association between nucleotide polymorphisms at 224 candidate genes and both climate variables and flowering phenotypes. Unlike genome-wide studies, candidate gene approaches are expected to enrich for the number of meaningful trait associations because they specifically target genes that are known to affect the trait of interest.

View Article and Find Full Text PDF

Gene duplications are an important factor in plant evolution, and lineage-specific expanded (LSE) genes are of particular interest. Receptor-like kinases expanded massively in land plants, and leucine-rich repeat receptor-like kinases (LRR-RLK) constitute the largest receptor-like kinases family. Based on the phylogeny of 7,554 LRR-RLK genes from 31 fully sequenced flowering plant genomes, the complex evolutionary dynamics of this family was characterized in depth.

View Article and Find Full Text PDF

Background: Recurrent gene duplication and retention played an important role in angiosperm genome evolution. It has been hypothesized that these processes contribute significantly to plant adaptation but so far this hypothesis has not been tested at the genome scale.

Results: We studied available sequenced angiosperm genomes to assess the frequency of positive selection footprints in lineage specific expanded (LSE) gene families compared to single-copy genes using a dN/dS-based test in a phylogenetic framework.

View Article and Find Full Text PDF

• The use of quantitative disease resistance (QDR) is a promising strategy for promoting durable resistance to plant pathogens, but genes involved in QDR are largely unknown. To identify genetic components and accelerate improvement of QDR in legumes to the root pathogen Aphanomyces euteiches, we took advantage of both the recently generated massive genomic data for Medicago truncatula and natural variation of this model legume. • A high-density (≈5.

View Article and Find Full Text PDF

Background: Gene duplications are a molecular mechanism potentially mediating generation of functional novelty. However, the probabilities of maintenance and functional divergence of duplicated genes are shaped by selective pressures acting on gene copies immediately after the duplication event. The ratio of non-synonymous to synonymous substitution rates in protein-coding sequences provides a means to investigate selective pressures based on genic sequences.

View Article and Find Full Text PDF

Extensive genomic resources are available in the model legume Medicago truncatula. Here, we present the discovery and design of the first array of single-nucleotide polymorphism (SNP) markers in M. truncatula through large-scale Sanger resequencing of genomic fragments spanning the genome, in a diverse panel of 16 M.

View Article and Find Full Text PDF

Background: We studied patterns of molecular adaptation in the wild Mediterranean legume Medicago truncatula. We focused on two phenotypic traits that are not functionally linked: flowering time and perception of symbiotic microbes. Phenology is an important fitness component, especially for annual plants, and many instances of molecular adaptation have been reported for genes involved in flowering pathways.

View Article and Find Full Text PDF

Background: Plant non-specific lipid transfer proteins (nsLTPs) are encoded by multigene families and possess physiological functions that remain unclear. Our objective was to characterize the complete nsLtp gene family in rice and arabidopsis and to perform wheat EST database mining for nsLtp gene discovery.

Results: In this study, we carried out a genome-wide analysis of nsLtp gene families in Oryza sativa and Arabidopsis thaliana and identified 52 rice nsLtp genes and 49 arabidopsis nsLtp genes.

View Article and Find Full Text PDF

We study here the evolution of genes located in the same physical locus using the recently sequenced Ha locus in seven wheat genomes in diploid, tetraploid, and hexaploid species and compared them with barley and rice orthologous regions. We investigated both the conservation of microcolinearity and the molecular evolution of genes, including coding and noncoding sequences. Microcolinearity is restricted to two groups of genes (Unknown gene-2, VAMP, BGGP, Gsp-1, and Unknown gene-8 surrounded by several copies of ATPase), almost conserved in rice and barley, but in a different relative position.

View Article and Find Full Text PDF

Modern sugarcane (Saccharum spp.) is an important grass that contributes 60% of the raw sugar produced worldwide and has a high biofuel production potential. It was created about a century ago through hybridization of two highly polyploid species, namely S.

View Article and Find Full Text PDF

Transposable elements are the main components of grass genomes, especially in Triticeae species. In a previous analysis, we identified a very short element, Morgane_CR626934-1; here we describe more precisely this unusual element. Morgane_CR626934-1 shows high sequence identity (until 98%) with ESTs belonging to other possible small elements, expressed under abiotic and biotic stress conditions.

View Article and Find Full Text PDF

Triticeae species (including wheat, barley and rye) have huge and complex genomes due to polyploidization and a high content of transposable elements (TEs). TEs are known to play a major role in the structure and evolutionary dynamics of Triticeae genomes. During the last 5 years, substantial stretches of contiguous genomic sequence from various species of Triticeae have been generated, making it necessary to update and standardize TE annotations and nomenclature.

View Article and Find Full Text PDF

The Hardness (Ha) locus controls grain hardness in hexaploid wheat (Triticum aestivum) and its relatives (Triticum and Aegilops species) and represents a classical example of a trait whose variation arose from gene loss after polyploidization. In this study, we investigated the molecular basis of the evolutionary events observed at this locus by comparing corresponding sequences of diploid, tertraploid, and hexaploid wheat species (Triticum and Aegilops). Genomic rearrangements, such as transposable element insertions, genomic deletions, duplications, and inversions, were shown to constitute the major differences when the same genomes (i.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: