Translation initiation of the hepatitis C virus (HCV) mRNA depends on an internal ribosome entry site (IRES) that encompasses most of the 5'UTR and includes nucleotides of the core coding region. This study shows that the polypyrimidine-tract-binding protein (PTB), an RNA-binding protein with four RNA recognition motifs (RRMs), binds to the HCV 5'UTR, stimulating its IRES activity. There are three isoforms of PTB: PTB1, PTB2, and PTB4.
View Article and Find Full Text PDFDEAD-box helicases play central roles in the metabolism of many RNAs and ribonucleoproteins by assisting their synthesis, folding, function and even their degradation or disassembly. They have been implicated in various phenomena, and it is often difficult to rationalize their molecular roles from in vivo studies. Once purified in vitro, most of them only exhibit a marginal activity and poor specificity.
View Article and Find Full Text PDFViral internal ribosomes entry site (IRES) elements coordinate the recruitment of the host translation machinery to direct the initiation of viral protein synthesis. Within hepatitis C virus (HCV)-like IRES elements, the sub-domain IIId(1) is crucial for recruiting the 40S ribosomal subunit. However, some HCV-like IRES elements possess an additional sub-domain, termed IIId2, whose function remains unclear.
View Article and Find Full Text PDFIn the late phase of the HIV virus cycle, the unspliced genomic RNA is exported to the cytoplasm for the necessary translation of the Gag and Gag-pol polyproteins. Three distinct translation initiation mechanisms ensuring Gag production have been described with little rationale for their multiplicity. The Gag-IRES has the singularity to be located within Gag ORF and to directly interact with ribosomal 40S.
View Article and Find Full Text PDFAs obligatory intracellular parasites, viruses rely on cellular machines to complete their life cycle, and most importantly they recruit the host ribosomes to translate their mRNA. The Hepatitis C viral mRNA initiates translation by directly binding the 40S ribosomal subunit in such a way that the initiation codon is correctly positioned in the P site of the ribosome. Such a property is likely to be central for many viruses, therefore the description of host-pathogen interaction at the molecular level is instrumental to provide new therapeutic targets.
View Article and Find Full Text PDFInitiation of translation on Type II IRESs, such as those of EMCV and FMDV viruses, has been well documented in the recent years. For EMCV, the current model argues for a mechanism in which the key interaction necessary for the pre-initiation complex recruitment is eIF4G binding to the central J-K domains of EMCV-IRES. Here we demonstrate that, in contrast with the current model, the molecular mechanism of EMCV-IRES involves direct recruitment of the 40S subunit.
View Article and Find Full Text PDFChagas' disease is caused by Trypanosoma cruzi, a protozoan transmitted to humans by blood-feeding insects, blood transfusion or congenitally. Previous research led us to discover a parasite proline racemase (TcPRAC) and to establish its validity as a target for the design of new chemotherapies against the disease, including its chronic form. A known inhibitor of proline racemases, 2-pyrrolecarboxylic acid (PYC), is water-insoluble.
View Article and Find Full Text PDFCoxsackievirus B3 (CVB3) is an enterovirus of the family of Picornaviridae. The Group B coxsackieviruses include six serotypes (B1 to B6) that cause a variety of human diseases, including myocarditis, meningitis, and diabetes. Among the group B, the B3 strain is mostly studied for its cardiovirulence and its ability to cause acute and persistent infections.
View Article and Find Full Text PDFExpression of the two isoforms p55 and p40 of HIV-1 Gag proteins relies on distinct translation initiation mechanisms, a cap-dependent initiation and two internal ribosome entry sites (IRESs). The regulation of these processes is complex and remains poorly understood. This study was focused on the influence of the 5'-UTR and on the requirement for the eukaryotic initiation factor (eIF)4F complex components.
View Article and Find Full Text PDFThe 5'UnTranslated Region (5'UTR) of HIV-1 genomic RNA, which precedes the Gag coding sequence, fulfills several roles during the lentivirus life cycle. This 335 nucleotides leader contains many stable structures that are crucial for the regulation of genetic expression at the level of transcription, splicing, and translation. In the late steps of the virus cycle, i.
View Article and Find Full Text PDFTrypanosoma vivax is one of the most common parasites responsible for animal trypanosomosis, and although this disease is widespread in Africa and Latin America, very few studies have been conducted on the parasite's biology. This is in part due to the fact that no reproducible experimental methods had been developed to maintain the different evolutive forms of this trypanosome under laboratory conditions. Appropriate protocols were developed in the 1990s for the axenic maintenance of three major animal Trypanosoma species: T.
View Article and Find Full Text PDFLentiviruses, the prototype of which is HIV-1, can initiate translation either by the classical cap-dependent mechanism or by internal recruitment of the ribosome through RNA domains called IRESs (internal ribosome entry sites). Depending on the virus considered, the mechanism of IRES-dependent translation differs widely. It can occur by direct binding of the 40S subunit to the mRNA, necessitating a subset or most of the canonical initiation factors and/or ITAF (IRES trans-acting factors).
View Article and Find Full Text PDFTranslation initiation on HIV genomic RNA relies on both cap and Internal Ribosome Entry Site (IRES) dependant mechanisms that are regulated throughout the cell cycle. During a unique phenomenon, the virus recruits initiation complexes through RNA structures located within Gag coding sequence, downstream of the initiation codon. We analyzed initiation complexes paused on the HIV-2 gag IRES and revealed that they contain all the canonical initiation factors except eIF4E and eIF1.
View Article and Find Full Text PDFTrypanosoma vivax is the main species involved in trypanosomosis, but very little is known about the immunobiology of the infective process caused by this parasite. Recently we undertook to further characterize the main parasitological, haematological and pathological characteristics of mouse models of T. vivax infection and noted severe anemia and thrombocytopenia coincident with rising parasitemia.
View Article and Find Full Text PDFAfrican trypanosomiasis is a severe parasitic disease that affects both humans and livestock. Several different species may cause animal trypanosomosis and although Trypanosoma vivax (sub-genus Duttonella) is currently responsible for the vast majority of debilitating cases causing great economic hardship in West Africa and South America, little is known about its biology and interaction with its hosts. Relatively speaking, T.
View Article and Find Full Text PDFGenomic RNA of primate lentiviruses serves both as an mRNA that encodes Gag and Gag-Pol polyproteins and as a propagated genome. Translation of this RNA is initiated by standard cap dependant mechanism or by internal entry of the ribosome. Two regions of the genomic RNA are able to attract initiation complexes, the 5' untranslated region and the gag coding region itself.
View Article and Find Full Text PDFArgonaute proteins (AGOs) are central to RNA interference (RNAi) and related silencing pathways. At the core of the RNAi pathway in the ancient parasitic eukaryote Trypanosoma brucei is a single Argonaute protein, TbAGO1, with an established role in the destruction of potentially harmful retroposon transcripts. One notable feature of TbAGO1 is that a fraction sediments with polyribosomes, and this association is facilitated by an arginine/glycine-rich domain (RGG domain) at the N terminus of the protein.
View Article and Find Full Text PDFTrypanosoma cruzi proline racemases (TcPRAC) are homodimeric enzymes that interconvert the L and D-enantiomers of proline. At least two paralogous copies of proline racemase (PR) genes are present per parasite haploid genome and they are differentially expressed during T. cruzi development.
View Article and Find Full Text PDFTrypanosoma cruzi proline racemases (TcPRAC) are the only eukaryotic proline racemases described so far. Except their role in the interconversion of free L- and D-proline enantiomers, parasite TcPRACs are involved in major T. cruzi biological pathways.
View Article and Find Full Text PDFThe first eukaryotic proline racemase (PRAC), isolated from the human Trypanosoma cruzi pathogen, is a validated therapeutic target against Chagas' disease. This essential enzyme is implicated in parasite life cycle and infectivity and its ability to trigger host B-cell nonspecific hypergammaglobulinemia contributes to parasite evasion and persistence. Using previously identified PRAC signatures and data mining we present the identification and characterization of a novel PRAC and five hydroxyproline epimerases (HyPRE) from pathogenic bacteria.
View Article and Find Full Text PDFAmino acid racemases catalyze the stereoinversion of the chiral C alpha to produce the d-enantiomers that participate in biological processes, such as cell wall construction in prokaryotes. Within this large protein family, bacterial proline racemases have been extensively studied as a model of enzymes acting with a pyridoxal-phosphate-independent mechanism. Here we report the crystal structure of the proline racemase from the human parasite Trypanosoma cruzi (TcPRACA), a secreted enzyme that triggers host B cell polyclonal activation, which prevents specific humoral immune responses and is crucial for parasite evasion and fate.
View Article and Find Full Text PDFPolyclonal lymphocyte activation is one of the major immunological disturbances observed after microbial infections and among the primary strategies used by the parasite Trypanosoma cruzi to avoid specific immune responses and ensure survival. T. cruzi is the insect-transmitted protozoan responsible for Chagas' disease, the third public health problem in Latin America.
View Article and Find Full Text PDF