Environmental prejudices progressively lead to the ban of dwarfing molecules in agriculture, and alternatives are urgently required. Mechanical stimulation (MS) is a promising, eco-friendly, and economical technique, but some responses to mechanical stimulation vary from one plant species to another. Additionally, as more frequent and violent wind episodes are forecasted under global climate change, knowledge of plant responses to stimuli mimicking wind sways is decisive for agriculture.
View Article and Find Full Text PDFA crucial attribute of potted ornamental plants is compactness characterized by well branched plants with rather short stems bearing numerous flowers. To gain plant compactness, producers use plant growth regulators (PGRs), in particular growth retardants during culture. However, due to their negative environmental impacts, growth retardants are progressively withdrawn from the market.
View Article and Find Full Text PDFBackground: Pathogen reduction of platelet concentrates (PCs) using amotosalen and broad-spectrum UVA illumination contributes to the safety of platelet transfusion by reducing the risk of transfusion-transmitted infections. We evaluated the in vitro quality of stored buffy-coat (BC) PCs treated with amotosalen and a prototype light-emitting diode (LED) illuminator.
Methods: Double-dose BC-PCs collected into PAS-III/plasma or SSP /plasma (55/45%) were treated with amotosalen in combination with either conventional UVA lamps (INT100 Illuminator 320-400 nm) or LED illuminators at 350 nm.
Megakaryocytes (MKs) are the precursor cells of platelets, located in the bone marrow (BM). Once mature, they extend elongated projections named proplatelets through sinusoid vessels, emerging from the marrow stroma into the circulating blood. Not all signals from the microenvironment that regulate proplatelet formation are understood, particularly those from the BM biomechanics.
View Article and Find Full Text PDFBackground: The platelet population is heterogeneous, with different subsets that differ on the basis of their function and reactivity. An intrinsic factor participating in this difference of reactivity could be the platelet age. The lack of relevant tools allowing a formal identification of young platelets prevents so far to draw solid conclusions regarding platelet reactivity.
View Article and Find Full Text PDFBone marrow megakaryocytes are large polyploid cells that ensure the production of blood platelets. They arise from hematopoietic stem cells through megakaryopoiesis. The final stages of this process are complex and classically involve the bipotent Megakaryocyte-Erythrocyte Progenitors (MEP) and the unipotent Megakaryocyte Progenitors (MKp).
View Article and Find Full Text PDFThe development, differentiation, and maturation of hematopoietic cells are regulated by the intrinsic and extrinsic regulation. Intrinsic activity is affected by cell autonomous gene expression and extrinsic factors originate from the so-called niche surrounding the hematopoietic cells. It remains unclear why the hematopoietic sites are shifted during embryogenesis.
View Article and Find Full Text PDFThe fetal liver is the site of a major expansion of the hematopoietic stem cell (HSC) pool and is also a privileged organ to study megakaryocyte progenitor differentiation. We identified in the mouse fetal liver at day 13.5 a discrete stromal cell population harboring a CD45TER119CD31CD51VCAM-1PDGFRα (VP) phenotype that lacked colony-forming unit fibroblast activity and harbored an hepatocyte progenitor signature.
View Article and Find Full Text PDFBud outgrowth is controlled by environmental and endogenous factors. Through the use of the photosynthesis inhibitor norflurazon and of masking experiments, evidence is given here that light acts mainly as a morphogenic signal in the triggering of bud outgrowth and that initial steps in the light signaling pathway involve cytokinins (CKs). Indeed, in rose (Rosa hybrida), inhibition of bud outgrowth by darkness is suppressed solely by the application of CKs.
View Article and Find Full Text PDFMicroenvironment and activation signals likely imprint heterogeneity in the lymphatic endothelial cell (LEC) population. Particularly LECs of secondary lymphoid organs are exposed to different cell types and immune stimuli. However, our understanding of the nature of LEC activation signals and their cell source within the secondary lymphoid organ in the steady state remains incomplete.
View Article and Find Full Text PDFThe mechanisms regulating megakaryopoiesis and platelet production (thrombopoiesis) are still incompletely understood. Identification of a progenitor with enhanced thrombopoietic capacity would be useful to decipher these mechanisms and to improve our capacity to produce platelets in vitro. Differentiation of peripheral blood CD34(+) cells in the presence of bone marrow-human mesenchymal stromal cells (MSCs) enhanced the production of proplatelet-bearing megakaryocytes (MKs) and platelet-like elements.
View Article and Find Full Text PDFCD34(+) cell dose provides a measure of hematopoietic tissue that predicts the rate of engraftment upon transplant. It is positively correlated with multiple measures of hematopoietic recovery, including platelet engraftment. Here we identify a subpopulation of CD34(+) cells that coexpress a surface antigen--MA6, which is more positively correlated with platelet engraftment in a clinical setting than CD34(+) alone.
View Article and Find Full Text PDFDelayed engraftment remains a major hurdle after cord blood (CB) transplantation. It may be due, at least in part, to low fucosylation of cell surface molecules important for homing to the bone marrow microenvironment. Because fucosylation of specific cell surface ligands is required before effective interaction with selectins expressed by the bone marrow microvasculature can occur, a simple 30-minute ex vivo incubation of CB hematopoietic progenitor cells with fucosyltransferase-VI and its substrate (GDP-fucose) was performed to increase levels of fucosylation.
View Article and Find Full Text PDFThe low incidence of CFU-F significantly complicates the isolation of homogeneous populations of mouse bone marrow stromal cells (BMSCs), a common problem being contamination with hematopoietic cells. Taking advantage of burgeoning evidence demonstrating the perivascular location of stromal cell stem/progenitors, we hypothesized that a potential reason for the low yield of mouse BMSCs is the flushing of the marrow used to remove single-cell suspensions and the consequent destruction of the marrow vasculature, which may adversely affect recovery of BMSCs physically associated with the abluminal surface of blood vessels. Herein, we describe a simple methodology based on preparation and enzymatic disaggregation of intact marrow plugs, which yields distinct populations of both stromal and endothelial cells.
View Article and Find Full Text PDFDuring the course of studies to investigate whether MPC circulate in response to G-CSF, the agent most frequently used to induce mobilization of hematopoietic progenitors, we observed that while G-CSF failed to increase the number of MPC in circulation (assayed in vitro as fibroblast colony-forming cells, CFU-F), G-CSF administration nevertheless resulted in a time-dependent increase in the absolute number of CFU-F within the BM, peaking at Day 7. Treatment of BM cells from G-CSF-treated mice with hydroxyurea did not alter CFU-F numbers, suggesting that the increase in their numbers in response to G-CSF administration is not due to proliferation of existing CFU-F. Given previous studies demonstrating that G-CSF potently induces bone turnover in mice, we hypothesized that the increase in CFU-F may be triggered by the bone resorption that occurs following G-CSF administration.
View Article and Find Full Text PDFWNT and bone morphogenetic protein (BMP) signaling are known to stimulate hemogenesis from pluripotent embryonic stem (ES) cells. However, osteochondrogenic mesoderm was generated effectively when BMP signaling is kept to a low level, while WNT signaling was strongly activated. When mesoderm specification from ES cells was exogenous factor dependent, WNT3a addition supported the generation of cardiomyogenic cells expressing lateral plate/extraembryonic mesoderm genes, and this process involved endogenous BMP activities.
View Article and Find Full Text PDFThe cellular and molecular microenvironment of epithelial stem and progenitor cells is poorly characterized despite well-documented roles in homeostatic tissue renewal, wound healing, and cancer progression. Here, we demonstrate that, in organotypic cocultures, dermal pericytes substantially enhanced the intrinsically low tissue-regenerative capacity of human epidermal cells that have committed to differentiate and that this enhancement was independent of angiogenesis. We used microarray analysis to identify genes expressed by human dermal pericytes that could potentially promote epidermal regeneration.
View Article and Find Full Text PDFThe use of umbilical cord blood (UCB) grafts for hematopoietic stem cell transplantation (HSCT) is a promising technique that permits a degree of human leukocyte antigen mismatch between the graft and the host without the concomitant higher rate of graft-versus-host disease that would be observed between an adult marrow graft and a mismatched host. A disadvantage to the use of UCB for HSCT is that immune reconstitution may be significantly delayed because of the low stem cell dose available in the graft. Ex vivo expansion of UCB CD34 cells would provide a greater number of stem cells; however, there are persistent concerns that ex vivo-expanded CD34 cells may lose pluripotency and the ability to contribute meaningfully to long-term engraftment.
View Article and Find Full Text PDFMethods Mol Biol
February 2009
Bone marrow from numerous species, including rodents and man, has been shown to contain a rare population of cells known as marrow stromal cells or mesenchymal stem cells (MSC). Given the innate ability of these cells to give rise to multiple tissue types including bone, fat and cartilage, there is considerable interest in utilizing MSC in a broad repertoire of cell-based therapies for the treatment of human disease. In order for such therapies to be realized, a preclinical animal model in which to refine strategies utilizing MSC is required.
View Article and Find Full Text PDFOriginally identified as a marker specifying murine hematopoietic stem cells, the Sca-1 antigen has since been shown to be differentially expressed by candidate stem cells in tissues including vascular endothelium, skeletal muscle, mammary gland, and prostate of adult mice. In the adult murine lung, Sca-1 has previously been identified as a selectable marker for the isolation of candidate nonhematopoietic (CD45(-)), nonendothelial (CD31(-)) bronchioalveolar stem cells (BASC) located at the bronchioalveolar duct junction that coexpress surfactant protein C and the Clara cell specific protein. Our systematic analysis of CD45(-)CD31(-)Sca-1(+) cells in fetal, neonatal, and adult lung shows that very few of these cells are detectable prior to birth but expand exponentially postnatally coinciding with the transition from the saccular to the alveolar stage of lung development.
View Article and Find Full Text PDFIn hematopoiesis, co-expression of Sca-1 and c-Kit defines cells (LS(+)K) with long term reconstituting potential. In contrast, poorly characterized LS(-)K cells fail to reconstitute lethally irradiated recipients. Relative quantification mass spectrometry and transcriptional profiling were used to characterize LS(+)K and LS(-)K cells.
View Article and Find Full Text PDFGerm line or hypothalamus-specific deletion of Y2 receptors in mice results in a doubling of trabecular bone volume. However, the specific mechanism by which deletion of Y2 receptors increases bone mass has not yet been identified. Here we show that cultured adherent bone marrow stromal cells from Y2(-/-) mice also demonstrate increased mineralization in vitro.
View Article and Find Full Text PDFIt has become clear that adult mammalian bone marrow contains not one but two ostensibly discrete populations of adult stem cells. The first and by far the most fully characterized are the hematopoietic stem cells responsible for maintaining lifelong production of blood cells. The biological characteristics and properties of the second marrow resident population of stem cells, variously termed bone marrow stromal cells or mesenchymal stem cells, are in contrast much less well understood.
View Article and Find Full Text PDF