Publications by authors named "Nathalie Bozzolo"

Mean-field models have the ability to predict the evolution of grain size distribution that occurs through thermomechanical solicitations. This article focuses on a comparison of mean-field models under grain-growth conditions. Different microstructure representations are considered and discussed, especially regarding the consideration of topology in the neighborhood construction.

View Article and Find Full Text PDF

Two finite element level-set (FE-LS) formulations are compared for the modeling of grain growth of 316L stainless steel in terms of grain size, mean values, and histograms. Two kinds of microstructures are considered: some are generated statistically from EBSD maps, and the others are generated by the immersion of EBSD data in the FE formulation. Grain boundary (GB) mobility is heterogeneously defined as a function of the GB disorientation.

View Article and Find Full Text PDF

In this study, four different finite element level-set (FE-LS) formulations are compared for the modeling of grain growth in the context of polycrystalline structures and, moreover, two of them are presented for the first time using anisotropic grain boundary (GB) energy and mobility. Mean values and distributions are compared using the four formulations. First, we present the strong and weak formulations for the different models and the crystallographic parameters used at the mesoscopic scale.

View Article and Find Full Text PDF

Mixtures or composites of titania and carbon have gained considerable research interest as innovative catalyst supports for low- and intermediate-temperature proton-exchange membrane fuel cells. For applications in electrocatalysis, variations in the local physicochemical properties of the employed materials can have significant effects on their behavior as catalyst supports. To assess microscopic heterogeneities in composition, structure, and morphology, a microscopic multitechnique approach is required.

View Article and Find Full Text PDF

Composite materials of titania and graphitic carbon, and their optimized synthesis are highly interesting for application in sustainable energy conversion and storage. We report on planar C/TiO2 composite films that are prepared on a polycrystalline titanium substrate by carbothermal treatment of compact anodic TiO2 with acetylene. This thin film material allows for the study of functional properties of C/TiO2 as a function of chemical composition and structure.

View Article and Find Full Text PDF