Publications by authors named "Nathalie Bonnefoy-Berard"

Anti-apoptotic Bfl-1 and pro-apoptotic Bax, two members of the Bcl-2 family sharing a similar structural fold, are classically viewed as antagonist regulators of apoptosis. However, both proteins were reported to be death inducers following cleavage by the cysteine protease µ-calpain. Here we demonstrate that calpain-mediated cleavage of full-length Bfl-1 induces the release of C-terminal membrane active α-helices that are responsible for its conversion into a pro-apoptotic factor.

View Article and Find Full Text PDF

Objective: Telomeres are protected by tightly regulated factors and elongated by telomerase. Short and/or deprotected chromosomes are recombinogenic and thereby cancer prone.

Materials And Methods: Together with the quantification of telomerase activity (TA), measuring telomere length (TL) and expression of the genes that govern telomere protection and elongation are useful for assessing telomere homeostasis.

View Article and Find Full Text PDF

The synthesis of non-peptidic helix mimetics based on a trimeric quinoline scaffold is described. The ability of these new compounds, as well as their synthetic dimeric intermediates, to bind to various members of the Bcl-2 protein anti-apoptotic group is also evaluated. The most interesting derivative of this new series (compound A) inhibited Bcl-x(L)/Bak, Bcl-x(L)/Bax and Bcl-x(L)/Bid interactions with IC(50) values around 25 μM.

View Article and Find Full Text PDF

Cross-talk between NK cells and dendritic cells (DCs) is critical for the potent therapeutic response to dsRNA, but the receptors involved remained controversial. We show in this paper that two dsRNAs, polyadenylic-polyuridylic acid and polyinosinic-polycytidylic acid [poly(I:C)], similarly engaged human TLR3, whereas only poly(I:C) triggered human RIG-I and MDA5. Both dsRNA enhanced NK cell activation within PBMCs but only poly(I:C) induced IFN-gamma.

View Article and Find Full Text PDF

Unlike other antiapoptotic members of the Bcl-2 family, Bfl-1 does not contain a well defined C-terminal transmembrane domain, and whether the C-terminal tail of Bfl-1 functions as a membrane anchor is not yet clearly established. The molecular modeling study of the full-length Bfl-1 performed within this work suggests that Bfl-1 may co-exist in two distinct conformational states: one in which its C-terminal helix alpha9 is inserted in the hydrophobic groove formed by the BH1-3 domains of Bfl-1 and one with its C terminus. Parallel analysis of the subcellular localization of Bfl-1 indicates that even if Bfl-1 may co-exist in two distinct conformational states, most of the endogenous protein is tightly associated with the mitochondria by its C terminus in both healthy and apoptotic peripheral blood lymphocytes as well as in malignant B cell lines.

View Article and Find Full Text PDF

Persistence of memory CD8(+) T cells is known to be largely controlled by common gamma chain cytokines, such as IL-2, IL-7 and IL-15. However, other molecules may be involved in this phenomenon. We show here that TLR2(-/-) mice have a decreased frequency of memory phenotype CD8(+) T cells when compared with WT mice.

View Article and Find Full Text PDF

Studies have suggested involvement of interleukin 17 (IL-17) in autoimmune diseases, although its effect on B cell biology has not been clearly established. Here we demonstrate that IL-17 alone or in combination with B cell-activating factor controlled the survival and proliferation of human B cells and their differentiation into immunoglobulin-secreting cells. This effect was mediated mainly through the nuclear factor-kappaB-regulated transcription factor Twist-1.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates CD8 T cell subsets formed without pathogen signals, focusing on their survival in sterile inflammatory conditions.
  • It identifies a new memory CD8 T cell subset characterized by intermediate levels of CD44 and CD122, which displays various memory traits.
  • These findings highlight the role of this new CD8 T cell subset in allergic contact dermatitis, providing insights into immune memory beyond typical infections.
View Article and Find Full Text PDF

TLR are involved in the detection of microbial infection as well as endogenous ligands that signal tissue and cell damage in mammals. This recognition plays an essential role in innate immune response and the initiation of adaptive immune response. We have previously shown that murine CD8 T cells express TLR2, and that costimulation of Ag-activated CD8 T cells with TLR2 ligands enhances their proliferation, survival, and effector functions.

View Article and Find Full Text PDF

TLR have a crucial role in the detection of microbial infection in mammals. Until recently, most investigations on TLR have focused on cells of the innate immune system and on the role of TLR in the initiation of antigen-specific responses following recognition of microbial products by APC. Here, we report that murine T cells express TLR1, TLR2, TLR6, TLR7 and TLR9 mRNA.

View Article and Find Full Text PDF

We analyzed here the expression of the prosurvival Bcl-2 homologue A1 in peripheral B cell compartment. We observed that A1 mRNA are highly expressed in peripheral B cells as compared with other anti-apoptotic genes of the Bcl-2 family such as bcl-xl and bcl-2 itself. The expression of A1 is up-regulated in immature B cells at the transition between transitional type 1 (T1) and type 2 (T2) cells, and remained highly expressed in mature (M) B cells.

View Article and Find Full Text PDF

The anti-proliferative effect of Bcl-2 acts mainly at the level of the G0/G1 phase of the cell cycle. Deletions and point mutations in the bcl-2 gene show that the anti-proliferative activity of Bcl-2, can in some cases, be dissociated from its anti-apoptotic function. This indicates that the effect of Bcl-2 on cell cycle progression can be a direct effect and not only a consequence of its anti-apoptotic activity.

View Article and Find Full Text PDF

Mycophenolic acid (MPA), the active metabolite of the immunosuppressive drug mycophenolate mofetil, is a selective inhibitor of inosine 5'-monophosphate dehydrogenase type II, a de novo purine nucleotide synthesis enzyme expressed in T and B lymphocytes and up-regulated upon cell activation. In this study, we report that the blockade of guanosine nucleotide synthesis by MPA inhibits mitogen-induced proliferation of PBL, an effect fully reversed by addition of guanosine and shared with mizoribine, another inhibitor of inosine 5'-monophosphate dehydrogenase. Because MPA does not inhibit early TCR-mediated activation events, such as CD25 expression and IL-2 synthesis, we investigated how it interferes with cytokine-dependent proliferation and survival.

View Article and Find Full Text PDF