Publications by authors named "Nathalie Bock"

Genetic variation at the 19q13.3 KLK locus is linked with prostate cancer susceptibility in men. The non-synonymous KLK3 single nucleotide polymorphism (SNP), rs17632542 (c.

View Article and Find Full Text PDF

Bone tissue engineering (BTE) has long sought to elucidate the key factors controlling human/humanized bone formation for regenerative medicine and disease modeling applications, yet with no definitive answers due to the high number and co-dependency of parameters. This study aims to clarify the relative impacts of in vitro biomimetic 'preculture composition' and 'preculture duration' before in vivo implantation as key criteria for the optimization of BTE design. These parameters are directly related to in vitro osteogenic differentiation (OD) and mineralization and are being investigated across different osteoprogenitor-loaded biomaterials, specifically fibrous calcium phosphate-polycaprolactone (CaP-mPCL) scaffolds and gelatin methacryloyl (GelMA) hydrogels.

View Article and Find Full Text PDF

Biofilm-related biomaterial infections are notoriously challenging to treat and can lead to chronic infection and persisting inflammation. To date, a large body of research can be reviewed for coatings which potentially prevent bacterial infection while promoting implant integration. Yet only a very small number has been translated from bench to bedside.

View Article and Find Full Text PDF

Background: The deployment of bone grafts (BGs) is critical to the success of scaffold-guided bone regeneration (SGBR) of large bone defects. It is thus critical to provide harvesting devices that maximize osteogenic capacity of the autograft while also minimizing graft damage during collection. As an alternative to the Reamer-Irrigator-Aspirator 2 (RIA 2) system - the gold standard for large-volume graft harvesting used in orthopaedic clinics today - a novel intramedullary BG harvesting concept has been preclinically introduced and referred to as the ARA (aspirator + reaming-aspiration) concept.

View Article and Find Full Text PDF
Article Synopsis
  • Prostate cancer research lacks diverse and widely used models, hindering progress in understanding and treating the disease.
  • A workshop held in May 2023 brought together researchers to discuss the use and challenges of new patient-derived models such as xenografts and organoids.
  • There is a call for expanding the variety of models, improving their testing conditions, ensuring reproducibility, and enhancing collaboration among research groups to better represent the complexities of prostate cancer.
View Article and Find Full Text PDF

Introduction: Fat embolism (FE) following intramedullary (IM) reaming can cause severe pulmonary complications and sudden death. Recently, a new harvesting concept was introduced in which a novel aspirator is used first for bone marrow (BM) aspiration and then for subsequent aspiration of morselized endosteal bone during sequential reaming (A + R + A). In contrast to the established Reamer-Irrigator-Aspirator (RIA) 2 system, the new A + R + A concept allows for the evacuation of fatty BM prior to reaming.

View Article and Find Full Text PDF

Three-dimensional (3D)-printed medical-grade polycaprolactone (mPCL) composite scaffolds have been the first to enable the concept of scaffold-guided bone regeneration (SGBR) from bench to bedside. However, advances in 3D printing technologies now promise next-generation scaffolds such as those with Voronoi tessellation. We hypothesized that the combination of a Voronoi design, applied for the first time to 3D-printed mPCL and ceramic fillers (here hydroxyapatite, HA), would allow slow degradation and high osteogenicity needed to regenerate bone tissue and enhance regenerative properties when mixed with xenograft material.

View Article and Find Full Text PDF

Background: Harvesting bone graft (BG) from the intramedullary canal to treat bone defects is largely conducted using the Reamer-Irrigator-Aspirator (RIA) system. The RIA system uses irrigation fluid during harvesting, which may result in washout of osteoinductive factors. Here, we propose a new harvesting technology dedicated to improving BG collection without the potential washout effect of osteoinductive factors associated with irrigation fluid.

View Article and Find Full Text PDF

Increasing evidence shows bone marrow (BM)-adipocytes as a potentially important contributor in prostate cancer (PCa) bone metastases. However, a lack of relevant models has prevented the full understanding of the effects of human BM-adipocytes in this microenvironment. It is hypothesized that the combination of tunable gelatin methacrylamide (GelMA)-based hydrogels with the biomimetic culture of human cells would offer a versatile 3D platform to engineer human bone tumor microenvironments containing BM-adipocytes.

View Article and Find Full Text PDF

3D organoid model technologies have led to the development of innovative tools for cancer precision medicine. Yet, the gold standard culture system (Matrigel®) lacks the ability for extensive biophysical manipulation needed to model various cancer microenvironments and has inherent batch-to-batch variability. Tunable hydrogel matrices provide enhanced capability for drug testing in breast cancer (BCa), by better mimicking key physicochemical characteristics of this disease’s extracellular matrix.

View Article and Find Full Text PDF

Basement membrane extracts (BME) derived from Engelbreth-Holm-Swarm (EHS) mouse sarcomas such as Matrigel remain the gold standard extracellular matrix (ECM) for three-dimensional (3D) cell culture in cancer research. Yet, BMEs suffer from substantial batch-to-batch variation, ill-defined composition, and lack the ability for physichochemical manipulation. Here, we developed a novel 3D cell culture system based on thiolated gelatin (Gel-SH), an inexpensive and highly controlled raw material capable of forming hydrogels with a high level of biophysical control and cell-instructive bioactivity.

View Article and Find Full Text PDF
Article Synopsis
  • Biomaterial-associated infections are a leading cause of implant failure, with bacteria forming biofilms on surfaces pre- or post-surgery, leading to infection rates of 4-30% in developed countries and even higher in developing countries.
  • Researchers tested melimine, a cationic peptide, by immobilizing it on 3D-printed polycaprolactone scaffolds, which was confirmed through advanced spectrometry techniques.
  • This modification significantly reduced bacteria colonization by approximately 78% compared to untreated surfaces and retained antibacterial properties for up to 3 days, providing a potential strategy to prevent biofilm-related infections without relying on antibiotics.
View Article and Find Full Text PDF

Current mixing steps of viscous materials rely on repetitive and time-consuming tasks which are performed mainly manually in a low throughput mode. These issues represent drawbacks in workflows that can ultimately result in irreproducibility of research findings. Manual-based workflows are further limiting the advancement and widespread adoption of viscous materials, such as hydrogels used for biomedical applications.

View Article and Find Full Text PDF

The tuneability of hydrogels renders them promising candidates for local drug delivery to prevent and treat local surgical site infection (SSI) while avoiding the systemic side-effects of intravenous antibiotic injections. Here, we present a newly developed gelatin methacryloyl (GelMA)-based hydrogel drug delivery system (GelMA-DDS) to locally deliver the broad-spectrum antibiotic cefazolin for SSI prophylaxis and treatment. Antibiotic doses from 3 µg to 90 µg were loaded in photocrosslinked GelMA hydrogel discs with 5 to 15% polymer concentration and drug encapsulation efficiencies, mechanical properties, crosslinking and release kinetics, as well as bacterial growth inhibition were assessed.

View Article and Find Full Text PDF

The mechanical properties of hydrogels, as well as native and engineered tissues are key parameters frequently assessed in biomaterial science and tissue engineering research. However, a lack of standardized methods and user-independent data analysis has impacted the research community for many decades and contributes to poor reproducibility and comparability of datasets, representing a significant issue often neglected in publications. In this study, we provide a software package, , facilitating the standardized and automated analysis of force-displacement data generated in unconfined compression tests.

View Article and Find Full Text PDF

Tissue engineering strategies are widely used to model and study the bone marrow microenvironment in healthy and pathological conditions. Yet, while bone function highly depends on mechanical stimulation, the effects of biomechanical stimuli on the bone marrow niche, specifically on bone marrow adipose tissue (BMAT) is poorly understood due to a lack of representative in vitro loading models. Here, we engineered a BMAT analog made of a GelMA (gelatin methacryloyl) hydrogel/medical-grade polycaprolactone (mPCL) scaffold composite to structurally and biologically mimic key aspects of the bone marrow microenvironment, and exploited an innovative bioreactor to study the effects of mechanical loading.

View Article and Find Full Text PDF

Prostate cancer (PCa) is the second most commonly diagnosed cancer in men, and bone is the most frequent site of metastasis. The tumor microenvironment (TME) impacts tumor growth and metastasis, yet the role of the TME in PCa metastasis to bone is not fully understood. We used a tissue-engineered xenograft approach in NOD-scid IL2Rγ (NSG) mice to incorporate two levels of humanization; the primary tumor and TME, and the secondary metastatic bone organ.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists are studying how medicines called antiandrogens affect prostate cancer that has spread to bones.
  • They created a special model using 3D printing and human cells to see how these medicines work in bone-like environments.
  • They found that one medicine, enzalutamide, works better than another medicine, bicalutamide, in helping people live longer with advanced prostate cancer.
View Article and Find Full Text PDF

Kallikrein-related peptidases (KLKs) are a family of secreted serine proteases, which form a network (the KLK activome) with an important role in proteolysis and signaling. In prostate cancer (PCa), increased KLK activity promotes tumor growth and metastasis through multiple biochemical pathways, and specific quantification and tracking of changes in the KLK activome could contribute to validation of KLKs as potential drug targets. Herein we report a technology platform based on novel activity-based probes (ABPs) and inhibitors enabling simultaneous orthogonal analysis of KLK2, KLK3, and KLK14 activity in hormone-responsive PCa cell lines and tumor homogenates.

View Article and Find Full Text PDF

Water plays a primary role in the functionality of biomedical polymers such as hydrogels. The state of water, defined as bound, intermediate, or free, and its molecular organization within hydrogels is an important factor governing biocompatibility and hemocompatibility. Here, we present a systematic study of water states in gelatin methacryloyl (GelMA) hydrogels designed for drug delivery and tissue engineering applications.

View Article and Find Full Text PDF

Infection is the major cause of morbidity after breast implant surgery. Biodegradable medical-grade polycaprolactone (mPCL) scaffolds designed and rooted in evidence-based research offer a promising alternative to overcome the limitations of routinely used silicone implants for breast reconstruction. Nevertheless, as with any implant, biodegradable scaffolds are susceptible to bacterial infection too, especially as bacteria can rapidly colonize the biomaterial surface and form biofilms.

View Article and Find Full Text PDF

Owing to their tunable properties, controllable degradation, and ability to protect labile drugs, hydrogels are increasingly investigated as local drug delivery systems. However, a lack of standardized methodologies used to characterize and evaluate drug release poses significant difficulties when comparing findings from different investigations, preventing an accurate assessment of systems. Here, we review the commonly used analytical techniques for drug detection and quantification from hydrogel delivery systems.

View Article and Find Full Text PDF

Preventing bacterial colonization on scaffolds while supporting tissue formation is highly desirable in tissue engineering as bacterial infection remains a clinically significant risk to any implanted biomaterials. Elemental selenium (Se) nanoparticles have emerged as a promising antimicrobial biomaterial without tissue cell toxicity, yet it remains unknown if their biological properties are from soluble Se ions or from direct cell-nanoparticle interactions. To answer this question, in this study, we developed a layered coating consisting of a Se nanoparticle layer underneath a micrometer-thick, biomimetic calcium phosphate (CaP) layer.

View Article and Find Full Text PDF

Polydopamine (PDA) has been recently used as a versatile priming layer for further functionalization of a biomaterial surface, particularly in biomimetic mineralization of biomaterials. Yet most of the existing literature is on inorganic substrates and the underlying effects of the PDA layer coatings on the nucleation and mineralization process and the mineral-substrate interface have not been clearly identified. Here we aimed to investigate the effects of the PDA layer on the nucleation and growth and interfacial morphology of calcium phosphate mineral layer (CaP) from 10× simulated body fluid (10× SBF) on polymeric substrates.

View Article and Find Full Text PDF