Publications by authors named "Nathalie Beaufort"

Genetic variants in HTRA1 are associated with stroke risk. However, the mechanisms mediating this remain largely unknown, as does the full spectrum of phenotypes associated with genetic variation in HTRA1. Here we show that rare HTRA1 variants are linked to ischemic stroke in the UK Biobank and BioBank Japan.

View Article and Find Full Text PDF
Article Synopsis
  • Loss-of-function mutations in the HTRA1 protein lead to cerebral vasculopathy, a condition that affects brain blood vessels.
  • The study identifies an HTRA1 variant that effectively corrects trimer assembly defects, restoring its enzymatic function, as well as a peptidic ligand that activates HTRA1 monomers.
  • Findings suggest potential strategies for targeted protein repair, offering hope for therapeutic approaches to conditions related to HTRA1 mutations.
View Article and Find Full Text PDF

Age-related decline in brain endothelial cell (BEC) function contributes critically to neurological disease. Comprehensive atlases of the BEC transcriptome have become available, but results from proteomic profiling are lacking. To gain insights into endothelial pathways affected by aging, we developed a magnetic-activated cell sorting-based mouse BEC enrichment protocol compatible with proteomics and resolved the profiles of protein abundance changes during aging.

View Article and Find Full Text PDF

has emerged as a major risk gene for stroke and cerebral small vessel disease with both rare and common variants contributing to disease risk. However, the precise mechanisms mediating this risk remain largely unknown as does the full spectrum of phenotypes associated with genetic variation in in the general population. Using a family-history informed approach, we first show that rare variants in are linked to ischemic stroke in 425,338 European individuals from the UK Biobank with replication in 143,149 individuals from the Biobank Japan.

View Article and Find Full Text PDF

Cerebral amyloid angiopathy (CAA) is an age-related condition and a major cause of intracerebral hemorrhage and cognitive decline that shows close links with Alzheimer's disease (AD). CAA is characterized by the aggregation of amyloid-β (Aβ) peptides and formation of Aβ deposits in the brain vasculature resulting in a disruption of the angioarchitecture. Capillaries are a critical site of Aβ pathology in CAA type 1 and become dysfunctional during disease progression.

View Article and Find Full Text PDF

Background: The small GTP-binding protein Rab31 plays an important role in the modulation of tumor biological-relevant processes, including cell proliferation, adhesion, and invasion. As an underlying mechanism, Rab31 is presumed to act as a molecular switch between a more proliferative and an invasive phenotype. This prompted us to analyze whether Rab31 overexpression in breast cancer cells affects expression of genes involved in epithelial-to-mesenchymal transition (EMT)-like processes when compared to Rab31 low-expressing cells.

View Article and Find Full Text PDF

White matter hyperintensities (WMH) are among the most common radiological abnormalities in the ageing population and an established risk factor for stroke and dementia. While common variant association studies have revealed multiple genetic loci with an influence on their volume, the contribution of rare variants to the WMH burden in the general population remains largely unexplored. We conducted a comprehensive analysis of this burden in the UK Biobank using publicly available whole-exome sequencing data (n up to 17 830) and found a splice-site variant in GBE1, encoding 1,4-alpha-glucan branching enzyme 1, to be associated with lower white matter burden on an exome-wide level [c.

View Article and Find Full Text PDF

The field of medical and population genetics in stroke is moving at a rapid pace and has led to unanticipated opportunities for discovery and clinical applications. Genome-wide association studies have highlighted the role of specific pathways relevant to etiologically defined subtypes of stroke and to stroke as a whole. They have further offered starting points for the exploration of novel pathways and pharmacological strategies in experimental systems.

View Article and Find Full Text PDF

Large artery atherosclerotic stroke (LAS) shows substantial heritability not explained by previous genome-wide association studies. Here, we explore the role of coding variation in LAS by analyzing variants on the HumanExome BeadChip in a total of 3,127 cases and 9,778 controls from Europe, Australia, and South Asia. We report on a nonsynonymous single-nucleotide variant in serpin family A member 1 () encoding alpha-1 antitrypsin [AAT; p.

View Article and Find Full Text PDF
Article Synopsis
  • Cerebral small vessel disease leads to strokes and cognitive issues, often linked to age and hypertension, but some early-onset forms are genetic.
  • Researchers identified a harmful variant in the HTRA1 gene in a family with autosomal dominant small vessel disease, using advanced genetic testing methods.
  • The presence of this variant was significantly higher in affected individuals compared to controls, indicating it likely contributes to this type of disease, differing in symptoms from well-known forms like CARASIL and CADASIL.
View Article and Find Full Text PDF

High temperature requirement protein A1 (HtrA1) is a primarily secreted serine protease involved in a variety of cellular processes including transforming growth factor β (TGF-β) signaling. Loss of its activity causes cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL), an inherited form of cerebral small vessel disease leading to early-onset stroke and premature dementia. Dysregulated TGF-β signaling is considered to promote CARASIL pathogenesis, but the underlying molecular mechanisms are incompletely understood.

View Article and Find Full Text PDF

Introduction: Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) represents the most common hereditary form of cerebral small vessel disease characterized by early-onset stroke and premature dementia. It is caused by mutations in the transmembrane receptor Notch3, which promote the aggregation and accumulation of the Notch3 extracellular domain (Notch3-ECD) within blood vessel walls. This process is believed to mediate the abnormal recruitment and dysregulation of additional factors including extracellular matrix (ECM) proteins resulting in brain vessel dysfunction.

View Article and Find Full Text PDF

Gynecological cancers, including malignant tumors of the ovaries, the endometrium and the cervix, account for approximately 10% of tumor-associated deaths in women of the Western world. For screening, diagnosis, prognosis, and therapy response prediction, the group of enzymes known as serine (Ser-)proteases show great promise as biomarkers. In the present review, following a summary of the clinical facts regarding malignant tumors of the ovaries, the endometrium and the cervix, and characterization of the most important Ser-proteases, we thoroughly review the current state of knowledge relating to the use of proteases as biomarkers of the most frequent gynecological cancers.

View Article and Find Full Text PDF

Within the vasculature, uncontrolled pericellular proteolysis can lead to disruption of cell-to-cell and cell-to-matrix interactions and subsequent detachment-induced cell apoptosis, or anoikis, contributing to inflammatory vascular diseases, with the endothelium as the major target. Most studies so far have focused on endogenous proteinases. However, during bloodstream infections, bacterial proteinases may also trigger endothelial anoikis.

View Article and Find Full Text PDF

Aims: CD163 is a macrophage receptor for haemoglobin-haptoglobin (Hb-Hp) complexes, responsible for the clearance of haemoglobin. We hypothesized that production of soluble CD163 (sCD163) may be due to proleolytic shedding of membrane CD163 by neutrophil elastase, reported to be increased in culprit atherosclerotic plaques. We analysed the relationship between CD163 solubilization and elastase in vitro, in macrophage culture, ex vivo in human atherosclerotic plaque samples, and in vivo, in plasma of patients with coronary artery disease.

View Article and Find Full Text PDF

Disruption of cell/ECM interactions resulting from uncontrolled pericellular proteolysis leads to detachment-induced cell apoptosis (anoikis), contributing to the morbid evolution of inflammatory vascular diseases. During cardiovascular infections, bacterial proteinases might induce vascular cells to enter a similar pathway. We focused on LasB, the predominant metalloproteinase secreted by the haematotropic pathogen Pseudomonas aeruginosa.

View Article and Find Full Text PDF

uPAR, the three-domain membrane receptor of the serine protease urokinase, plays a crucial role in tumor growth and metastasis. Several mRNA splice variants of this receptor have been reported. One of these, uPAR-del4/5, lacking exons 4 and 5, and thus encoding a uPAR form lacking domain DII, is specifically overexpressed in breast cancer and represents a statistically independent prognostic factor for distant metastasis-free survival in breast cancer patients.

View Article and Find Full Text PDF

Pathogenic bacteria, including Pseudomonas aeruginosa, interact with and engage the host plasminogen (Plg) activation system, which encompasses the urokinase (uPA)-type Plg activator, and is involved in extracellular proteolysis, including matrilysis and fibrinolysis. We hypothesized that secreted bacterial proteases might contribute to the activation of this major extracellular proteolytic system, thereby participating in bacterial dissemination. We report that LasB, a thermolysin-like metalloprotease secreted by Ps.

View Article and Find Full Text PDF

Human kallikrein-related peptidases (KLKs) are 15 homologous serine proteases involved in several (patho)physiological processes, including cancer. Secreted as precursors, they are activated upon proteolytic release of a short pro-peptide. We searched for interconnection of KLKs within extracellular proteolytic networks leading to activation of protease zymogens and found that (i) pro-KLK activation by other KLKs is scarce, with the exception of pro-KLK11, which is efficiently activated by KLK4 and 5; (ii) pro-KLK4 is activated by matrix metalloproteinase 3; and (iii) trypsin-like KLKs efficiently activate the serine protease urokinase.

View Article and Find Full Text PDF

Certain serine proteases are considered to be signaling molecules that act through protease-activated receptors (PARs). Our recent studies have implicated PAR1 and PAR4 (thrombin receptors) and PAR2 (trypsin receptor) in human colon cancer growth. Here we analyzed the expression of KLK4, a member of the kallikrein-related peptidase (KLK) family of serine proteases and explored whether this member can activate PAR1 and PAR2 in human colon cancer cells.

View Article and Find Full Text PDF

Human kallikrein-related peptidases (KLKs) are (chymo)-trypsin-like serine proteinases that are expressed in a variety of tissues such as prostate, ovary, breast, testis, brain, and skin. Although their physiological functions have been only partly elucidated, many of the KLKs appear to be useful prognostic cancer markers, showing distinct correlations between their expression levels and different stages of cancer. Recent advances in the purification of 'new type' recombinant KLKs allowed solution of the crystal structures of KLK4, KLK5, KLK6, and KLK7.

View Article and Find Full Text PDF