The DNA and RNA aptamers D4 and R4, respectively, emerged from the modification of PC-3 cell-binding aptamer A4. Our objective was to characterize the aptamers in silico and in vitro and begin to identify their target molecules. We represented their structures using computational algorithms; evaluated their binding to several prostate cell lines and their effects on the viability and migration of these cells; and determined their dissociation constant by flow cytometry.
View Article and Find Full Text PDFProstate cancer (PCa) is the second most frequent type of cancer in men and assessing circulating tumor cells (CTCs) by liquid biopsy is a promising tool to help in cancer early detection, staging, risk of recurrence evaluation, treatment prediction and monitoring. Blood-based liquid biopsy approaches enable the enrichment, detection and characterization of CTCs by biomarker analysis. Hence, comprehending the molecular markers, their role on each stage of cancer development and progression is essential to provide information that can help in future implementation of these biomarkers in clinical assistance.
View Article and Find Full Text PDFSince prostate cancer (PCa) relies on limited diagnosis and therapies, more effective alternatives are needed. Aptamers are versatile tools that may be applied for better clinical management of PCa patients. This review shows the trends on aptamer-based applications for PCa to understand their future development.
View Article and Find Full Text PDF