Publications by authors named "Nathalia Gonsales da Rosa-Garzon"

Article Synopsis
  • Aspergillus fumigatus causes the infection known as aspergillosis and uses asexual spores to infect hosts, but little is known about how it evades the immune system.
  • In this study, researchers analyzed the conidial surface proteins of A. fumigatus and compared them to two non-pathogenic species, discovering 62 proteins unique to A. fumigatus.
  • Testing null mutants for 42 genes revealed that deleting 33 of these genes affected the fungus's ability to resist immune responses, particularly highlighting a gene that influences the proinflammatory cytokine IL-1β, which is crucial for infection in a mouse model.
View Article and Find Full Text PDF

Transmembrane serine protease 2 (TMPRSS2) is a membrane-bound protease belonging to the type II transmembrane serine protease (TTSP) family. It is a multidomain protein, including a serine protease domain responsible for its self-activation. The protein has been implicated as an oncogenic transcription factor and for its ability to cleave (prime) the SARS-CoV-2 spike protein.

View Article and Find Full Text PDF

Acinetobacter bereziniae has recently gained medical notoriety due to its emergence as a multidrug resistance and healthcare-associated pathogen. In this study, we report the whole-genome characterization of an A. bereziniae strain (A321) recovered from an infected semiaquatic turtle, as well as a comparative analysis of A.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the role of conidial surface proteins in the pathogenic fungus responsible for aspergillosis and compares it with non-pathogenic species.
  • Researchers identified 62 proteins specifically expressed on the surface of the conidia and deleted genes for 42 of these proteins to assess their impact on infection.
  • Findings indicate that certain proteins, particularly one related to IL-1β production, are crucial for the fungus in evading the immune response during initial host infection.
View Article and Find Full Text PDF

This study aimed to evaluate the disruptive effect of fungal mutanase against cariogenic biofilm after short-term treatment. For that, mature Streptococcus mutans biofilms (n = 9) were exposed to active or inactivated enzymes produced by Trichoderma harzianum for 1 min, two times per day. Biofilms were analyzed by amount of matrix water-insoluble polysaccharides, bacterial viability, acidogenicity, and morphology by scanning electron microscopy (SEM).

View Article and Find Full Text PDF

The industrial uses of peptidases have already been consolidated; however, their range of applications is increasing. Thus, the biochemical characterization of new peptidases could increase the range of their biotechnological applications. In silico analysis identified a gene encoding a putative serine peptidase from Purpureocillium lilacinum (Pl_SerPep), annotated as a cuticle-degrading enzyme.

View Article and Find Full Text PDF

Filamentous fungus Purpureocillium lilacinum is an emerging pathogen that infects immunocompromised and immunocompetent individuals and is resistant to several azole molecules. Although azole resistance mechanisms are well studied in Aspergillus sp. and Candida sp.

View Article and Find Full Text PDF

Recently, there has been an increase in the demand for enzymes with modified activity, specificity, and stability. Enzyme engineering is an important tool to meet the demand for enzymes adjusted to different industrial processes. Knowledge of the structure and function of enzymes guides the choice of the best strategy for engineering enzymes.

View Article and Find Full Text PDF

Lapachol is a natural naphthoquinone with a range of biological effects, including anticancer activity. Microbial transformations of lapachol can lead to the formation of new biologically active compounds. In addition, fungi can produce secondary metabolites that are also important for drug discovery.

View Article and Find Full Text PDF

The objective of the present study was to optimize parameters for the cultivation of Lichtheimia corymbifera (mesophilic) and Byssochlamys spectabilis (thermophilic) for the production of β-glucosidases and to compare the catalytic and thermodynamic properties of the partially purified enzymes. The maximum amount of β-glucosidase produced by L. corymbifera was 39 U/g dry substrate (or 3.

View Article and Find Full Text PDF

Peptidases are enzymes that cleave peptide bonds, yielding proteins and peptides. Enzymes in this class also perform several other functions, regulating the activation or inactivation of target substrates via proteolysis. Owing to these functions, peptidases have been extensively used in industrial and biotechnological applications.

View Article and Find Full Text PDF
Article Synopsis
  • Fusarium oxysporum is a harmful fungus that affects many plants, leading to significant agricultural losses; its virulence is influenced by environmental pH.
  • Researchers studied how different culture-medium pH levels (5, 6, 7, and 8) impact the production of enzymes and protein profiles in F. oxysporum URM 7401.
  • Their findings revealed that enzyme diversity and intracellular protein profiles varied with pH, with optimal growth and metabolism occurring in neutral to alkaline conditions.
View Article and Find Full Text PDF