Recent increases in prescriptions and illegal drug use as well as exposure to environmental contaminants during pregnancy have highlighted the critical importance of placental toxicology in understanding and identifying risks to both mother and fetus. Although advantageous for basic science, current in vitro models often fail to capture the complexity of placental response, likely due to their inability to recreate and monitor aspects of the microenvironment including physical properties, mechanical forces and stiffness, protein composition, cell-cell interactions, soluble and physicochemical factors, and other exogenous cues. Tissue engineering holds great promise in addressing these challenges and provides an avenue to better understand basic biology, effects of toxic compounds and potential therapeutics.
View Article and Find Full Text PDFBackground: DNA methylation plays an important role in regulating gene expression in mammals. The covalent DNMT1 inhibitors 5-azacytidine and decitabine are widely used in research to reduce DNA methylation levels, but they impart severe cytotoxicity which limits their demethylation capability and confounds interpretation of experiments. Recently, a non-covalent inhibitor of DNMT1 called GSK-3484862 was developed by GlaxoSmithKline.
View Article and Find Full Text PDFB1 lymphocytes are a small but unique component of the innate immune-like cells. However, their ontogenic origin is still a matter of debate. Although it is widely accepted that B1 cells originate early in fetal life, whether or not they arise from hematopoietic stem cells (HSCs) is still unclear.
View Article and Find Full Text PDFPrecursors of hematopoietic stem cells (pre-HSCs) have been identified as intermediate precursors during the maturation process from hemogenic endothelial cells to HSCs in the aorta-gonad-mesonephros (AGM) region of the mouse embryo at embryonic day 10.5. Although pre-HSCs acquire an efficient adult-repopulating ability after ex vivo co-culture, their native hematopoietic capacity remains unknown.
View Article and Find Full Text PDFIt is generally considered that mouse embryonic stem cell (ESC) differentiation into blood cells in vitro recapitulates yolk sac (YS) hematopoiesis. As such, similar to YS-derived B-progenitors, we demonstrate here that ESC-derived B-progenitors differentiate into B-1 and marginal zone B cells, but not B-2 cells in immunodeficient mice after transplantation. ESC-derived B-1 cells were maintained in the recipients for more than 6 months, secreting natural IgM antibodies in vivo.
View Article and Find Full Text PDFThe recent advance of technologies enables us to trace the cell fate in vivo by marking the cells that express the gene of interest or by barcoding them at a single cell level. Various tamoxifen-inducible Cre-recombinase mice combined with Rosa-floxed lines are utilized. In this review, with the results revealed by lineage tracing assays, we re-visit the long-standing debate for the origin of hematopoietic stem cells in the mouse embryo, and introduce the view of native hematopoiesis, and possible leukemic-initiating cells emerged during fetal stages.
View Article and Find Full Text PDFThe placenta plays a major role in the development of blood cells in the mouse and human embryo. Hematopoiesis and vasculogenesis in placenta are two closely interconnected processes. The mouse model has been widely used to study placental hematopoiesis.
View Article and Find Full Text PDFPrevious studies have shown that human and mouse placentas have hematopoietic potential during mid-gestation. In this investigation, we used histological and immunohistological approaches to visualize hematopoietic cells in mouse placenta between 9.5 and 12.
View Article and Find Full Text PDF