We measure the effective nonlinearity of various hollow-core photonic band-gap fibers. Our findings indicate that differences of tens of nanometers in the fiber structure result in significant changes to the power propagating in the silica glass and thus in the effective nonlinearity of the fiber. These results show that it is possible to engineer the nonlinear response of these fibers via small changes to the glass structure.
View Article and Find Full Text PDFA hollow-core photonic band-gap fiber with very high group birefringence is fabricated and characterized. Two independent methods, wavelength scanning and direct measurement of differential group delay (DGD), are used to obtain the group beatlength and group birefringence. The fiber illustrates a very high group birefringence of 0.
View Article and Find Full Text PDFThe measured dispersion of a low-loss, hollow-core photonic band-gap fiber is anomalous throughout most of the transmission band, and its variation with wavelength is large compared with that of a conventional step-index fiber. For an air-filled fiber, femtosecond self-frequency--shifted fundamental solitons with peak powers greater than 2megawatts can be supported. For Xe-filled fibers, nonfrequency-shifted temporal solitons with peak powers greater than 5.
View Article and Find Full Text PDFPhotonic bandgap structures use the principle of interference to reflect radiation. Reflection from photonic bandgap structures has been demonstrated in one, two and three dimensions and various applications have been proposed. Early work in hollow-core photonic bandgap fibre technology used a hexagonal structure surrounding the air core; this fibre was the first demonstration of light guided inside an air core of a photonic bandgap fibre.
View Article and Find Full Text PDF