Publications by authors named "Natesan Murugesan"

Introduction Stroke is a serious medical condition characterized by the sudden interruption of blood flow to the brain, resulting in the death of brain cells. It is a leading cause of long-term disability and mortality worldwide. Stroke has some associated risk factors, both modifiable and non-modifiable ones.

View Article and Find Full Text PDF

IRAK4 is an attractive therapeutic target for the treatment of inflammatory conditions. Structure guided optimization of a nicotinamide series of inhibitors has been expanded to explore the IRAK4 front pocket. This has resulted in the identification of compounds such as with improved potency and selectivity.

View Article and Find Full Text PDF

Several strategies have been employed to reduce the long in vivo half-life of our lead CB1 antagonist, triazolopyridazinone 3, to differentiate the pharmacokinetic profile versus the lead clinical compounds. An in vitro and in vivo clearance data set revealed a lack of correlation; however, when compounds with <5% free fraction were excluded, a more predictable correlation was observed. Compounds with log P between 3 and 4 were likely to have significant free fraction, so we designed compounds in this range to give more predictable clearance values.

View Article and Find Full Text PDF

Obesity remains a significant public health issue leading to Type II diabetes and cardiovascular disease. CB1 antagonists have been shown to suppress appetite and reduce body weight in animal models as well as in humans. Evaluation of pre-clinical CB1 antagonists to establish relationships between in vitro affinity and in vivo efficacy parameters are enhanced by ex vivo receptor occupancy data.

View Article and Find Full Text PDF

Unlabelled: The endothelin subtype-A (ETA) receptor is a member of a family of G-protein-coupled receptors that plays a central role in vasoconstriction, cell proliferation, and hormone production. The aim of this study was to synthesize and evaluate in vivo (11)C- and (18)F-labeled analogs of the potent and selective ETA antagonist N-[[2'-[[(4,5-dimethyl-3-isoxazolyl)amino]sulfonyl]-4-(2-oxazolyl)[1,1'-biphenyl]-2-yl]methyl]-N,3,3-trimethylbutanamide (BMS-207940).

Methods: Protected precursors and authentic nonradioactive standards were synthesized by reductive amination and subsequent alkylation of protected aldehyde 1.

View Article and Find Full Text PDF

T-type calcium channel antagonists were designed using a protocol involving the program SPROUT and constrained by a ComFA-based pharmacophore model. Scaffolds generated by SPROUT were evaluated based on their ability to be translated into structures that were synthetically tractable. From this exercise, a novel series of potent and selective T-type channel antagonists containing a biaryl sulfonamide core were discovered.

View Article and Find Full Text PDF

2-{Butyryl-[2'-(4,5-dimethyl-isoxazol-3-ylsulfamoyl)-biphenyl-4-ylmethyl]-amino}-N-isopropyl-3-methyl-butyramide (BMS-1) is a potent dual acting angiotensin-1 and endothelin-A receptor antagonist. The compound was subject to rapid metabolic clearance in monkey and human liver microsomes and exhibited low systemic exposure and marked interanimal variability in cynomolgus monkeys after p.o.

View Article and Find Full Text PDF

A series of inhibitors of mammalian 15-lipoxygenase based on tryptamine and homotryptamine scaffolds is described. Compounds with aryl substituents at C-2 of the indole core of tryptamine and homotryptamine sulfonamides (e.g.

View Article and Find Full Text PDF

In a previous report we demonstrated that merging together key structural elements present in an AT(1) receptor antagonist (1, irbesartan) with key structural elements in a biphenylsulfonamide ET(A) receptor antagonist (2) followed by additional optimization provided compound 3 as a dual-action receptor antagonist (DARA), which potently blocked both AT(1) and ET(A) receptors. Described herein are our efforts directed toward improving both the pharmacokinetic profile as well as the AT(1) and ET(A) receptor potency of 3. Our efforts centered on modifying the 2'-side chain of 3 and examining the isoxazolylsulfonamide moiety in 3.

View Article and Find Full Text PDF

Angiotensin II and endothelin-1 activate their respective AT(1) and ET(A) receptors on vascular smooth muscle cells, producing vasoconstriction, and both peptides are implicated in the pathogenesis of essential hypertension. Angiotensin II potentiates the production of endothelin, and conversely endothelin augments the synthesis of angiotensin II. Both AT(1) and ET(A) receptor antagonists lower blood pressure in hypertensive patients; thus, a combination AT(1)/ET(A) receptor antagonist may have greater efficacy and broader utility compared with each drug alone.

View Article and Find Full Text PDF

A series of 4'-[(imidazol-1-yl)methyl]biphenylsulfonamides has potent antagonist activity against both angiotensin II AT(1) and endothelin ET(A) receptors. Such dual-acting antagonists could have utility in the treatment of hypertension, heart failure, and other cardiovascular diseases in a broad patient population. Certain compounds in the present series are orally active in a rat model of angiotensin II-mediated hypertension.

View Article and Find Full Text PDF

We have previously disclosed the selective ET(A) receptor antagonist N-(3,4-dimethyl-5-isoxazolyl)-4'-(2-oxazolyl)[1,1'-biphenyl]-2-sulfonamide (1, BMS-193884) as a clinical development candidate. Additional SAR studies at the 2'-position of 1 led to the identification of several analogues with improved binding affinity as well as selectivity for the ET(A) receptor. Following the discovery that a 3-amino-isoxazole group displays significantly improved metabolic stability in comparison to its 5-regioisomer, the 3-amino-isoxazole group was combined with the optimal 2'-substituent leading to 16a (BMS-207940).

View Article and Find Full Text PDF

The ET(A) receptor antagonist (2) (N-(3,4-dimethyl-5-isoxazolyl)-4'-(2-oxazolyl)-[1,1'-biphenyl]-2-sulfonamide, BMS-193884) shares the same biphenyl core as a large number of AT(1) receptor antagonists, including irbesartan (3). Thus, it was hypothesized that merging the structural elements of 2 with those of the biphenyl AT(1) antagonists (e.g.

View Article and Find Full Text PDF

A number of 4'-heterocyclic biphenylsulfonamide derivatives, formally derived from BMS-193884 (1) by replacing the oxazole ring with other heterocyclic rings, are potent and selective endothelin A (ET(A)) receptor antagonists. Among the analogues examined, the pyrimidine derivative 18 is the most potent (K(i)=0.9 nM) and selective for the ET(A) receptor, approximately equivalent to 1.

View Article and Find Full Text PDF