Isotopes Environ Health Stud
October 2021
Lake Sevan is a meso-eutrophic water body, which was severely impacted by anthropogenic level decrease, pollution and eutrophication during the last century. Starting in the 1970s, these processes resulted in the formation of an oxygen-depleted hypolimnion during summer-autumn stratification of the lake. In this work, we demonstrate for the first time that eutrophication of the lake leads not only to the full depletion of oxygen and nitrate in the hypolimnion but as well to the presence of sulfate-reducing microorganisms and toxic hydrogen sulfide.
View Article and Find Full Text PDFPollution by heavy metals and metalloids is detrimental to human health due to their toxic, genotoxic, and carcinogenic effects. The traditional approach to assess the extent of environmental and occupational exposures of metals is human biomonitoring (HBM). This method has several limitations, including invasiveness, sampling bias, cost- and time-intensiveness, and ethical issues.
View Article and Find Full Text PDFGeochem Trans
December 2014
Background: Pyrite is one of the most abundant and widespread of the sulfide minerals with a central role in biogeochemical cycles of iron and sulfur. Due to its diverse roles in the natural and anthropogenic sulfur cycle, pyrite has been extensively studied in various experimental investigations of the kinetics of its dissolution and oxidation, the isotopic fractionations associated with these reactions, the microbiological processes involved, and the effects of pyrite on human health. Elemental sulfur (S) is a common product of incomplete pyrite oxidation.
View Article and Find Full Text PDFSevere hypoxia leads to excess production of hydrogen sulfide in marine environments. In this study, we examined the effect of sulfide on growth of four facultative anaerobic marine bacteria in minimal media under anaerobic conditions. The Gram-negative chemolithoautotrophic Marinobacter sp.
View Article and Find Full Text PDFTreatment and disposal of high volume of salty waste production in recirculating aquaculture systems (RASs) is a major challenge and the sludge is often a source of environmental pollution and salinization of receiving soils and water bodies. Anaerobic digestion is an efficient mean for the treatment of wastes of different origins and might serve a useful tool for the reduction of salty aquaculture discharge load. Use of an upflow anaerobic sludge blanket (UASB) reactor for digestion of brackish aquaculture sludge from RASs under different C:N ratios, temperatures, and hydraulic retention times demonstrated high removal efficiencies of over 92% as volatile solids (VS), 98% as chemical oxygen demand and 81% as total suspended solids in all reactors.
View Article and Find Full Text PDFCurr Opin Biotechnol
June 2010
Development of environmentally sustainable farming of marine and freshwater species using recirculating aquaculture systems (RASs) requires a complete understanding of the biological component involved in wastewater treatment. This component integrates biofilters composed of microbial communities whose structure, dynamics, and activities are responsible for system success. Engineering highly efficient, environmentally sound, disease-free, and economically viable systems necessitates a thorough knowledge of microbial processes involved in all facets of RAS biofilters and has only recently been the focus of comprehensive studies.
View Article and Find Full Text PDFEscherichia coli G35 N49 strain, from the gut of breast cancer patients, in comparison with the E. coli G35 N61 strain, from the gut of healthy people, shows in vitro reduction in growth rates and maximal growth yield. The changes in certain membrane characteristics, such as low membrane potential and disturbance in intramembrane interaction of H+ -ATPase F0F1 with the TrkA system, indicate a dysfunction in ion transport and enzymatic activity.
View Article and Find Full Text PDF