Publications by authors named "Nate Lawrence"

We demonstrate 25 times radiation rate and 2 times quantum efficiency enhancement of Er ions in metal-insulator-metal (MIM) ring nanocavities at room temperature. In particular, using time-resolved photoluminescence spectroscopy in partnership with full-vector numerical simulations based on the finite difference time domain (FDTD) method, we design, fabricate, and systematically investigate the photonic density of states, the quantum efficiency, and the 1.55 μm radiation dynamics of cavities with varying nanoscale active regions.

View Article and Find Full Text PDF

In this Letter, we experimentally demonstrate structured light carrying multiple values of orbital angular momentum (OAM) in the farfield scattering region of Vogel spiral arrays of metallic nanoparticles. Using Fourier-Hankel mode decomposition analysis and interferometric reconstruction of the complex amplitude of scattered waves, we show the ability to encode well-defined numerical sequences, determined by the aperiodic spiral geometry, into azimuthal OAM values, in excellent agreement with analytical scattering theory. The generation of azimuthal sequences of OAM values by light scattering from engineered aperiodic surfaces is relevant to a number of device applications for secure optical communication, classical cryptography, and quantum cryptography.

View Article and Find Full Text PDF

In this paper, we present a general analytical model for light scattering by arbitrary Vogel spiral arrays of circular apertures illuminated at normal incidence. This model suffices to unveil the fundamental mathematical structure of their complex Fraunhofer diffraction patterns and enables the engineering of optical beams carrying multiple values of orbital angular momentum (OAM). By performing analytical Fourier-Hankel decomposition of spiral arrays and far field patterns, we rigorously demonstrate the ability to encode specific numerical sequences onto the OAM values of diffracted optical beams.

View Article and Find Full Text PDF

Silicon Nanowires prepared by Metal-Assisted Chemical Etching have been nanopatterned into periodic and aperiodic array geometries displaying functionality at visible wavelengths using top-down planar processing techniques. Broadband photoluminescense enhancement up to approximately one order of magnitude is measured from golden-angle spiral arrays over a wide parameter space.

View Article and Find Full Text PDF

Based on analytical scattering theory, we develop a multipolar expansion method to investigate systematically the near-field enhancement, far-field scattering and Local Density of States (LDOS) spectra in concentric metal-insulator-metal (MIM) cylindrical nanostructures, or coaxial plasmonic nanowires (CPNs). We demonstrate that these structures support distinctive plasmonic resonances with strongly reduced scattering in the far-field zone and significant electric field enhancement in deep sub-wavelength dielectric regions. Additionally, we study systematically the effects of geometrical parameters and dielectric index on the near-field and far-field plasmonic response of CPNs in the visible and near infrared spectral range.

View Article and Find Full Text PDF