Publications by authors named "Nate Hough-Snee"

As Earth's climate has varied strongly through geological time, studying the impacts of past climate change on biodiversity helps to understand the risks from future climate change. However, it remains unclear how paleoclimate shapes spatial variation in biodiversity. Here, we assessed the influence of Quaternary climate change on spatial dissimilarity in taxonomic, phylogenetic, and functional composition among neighboring 200-kilometer cells (beta-diversity) for angiosperm trees worldwide.

View Article and Find Full Text PDF

Safeguarding Earth's tree diversity is a conservation priority due to the importance of trees for biodiversity and ecosystem functions and services such as carbon sequestration. Here, we improve the foundation for effective conservation of global tree diversity by analyzing a recently developed database of tree species covering 46,752 species. We quantify range protection and anthropogenic pressures for each species and develop conservation priorities across taxonomic, phylogenetic, and functional diversity dimensions.

View Article and Find Full Text PDF
Article Synopsis
  • Understanding what makes alien species successful can help predict future invasions.
  • Researchers identified three key dimensions of invasiveness: local abundance, geographic range size, and habitat breadth, analyzing data from over one million vegetation plots across Europe.
  • The study found that earlier introductions and certain traits, especially from acquisitive growth strategists, contributed to higher success rates in invasiveness, while also highlighting unique patterns in specific habitats.
View Article and Find Full Text PDF

Background: Forested wetlands support distinct vegetation and hydrology relative to upland forests and shrub-dominated or open water wetlands. Although forested wetland plant communities comprise unique habitats, these ecosystems' community structure is not well documented in the U.S.

View Article and Find Full Text PDF
Article Synopsis
  • Plant traits, which include various characteristics like morphology and physiology, play a crucial role in how plants interact with their environment and impact ecosystems, making them essential for research in areas like ecology, biodiversity, and environmental management.
  • The TRY database, established in 2007, has become a vital resource for global plant trait data, promoting open access and enabling researchers to identify and fill data gaps for better ecological modeling.
  • Although the TRY database provides extensive data, there are significant areas lacking consistent measurements, particularly for continuous traits that vary among individuals in their environments, presenting a major challenge that requires collaboration and coordinated efforts to address.
View Article and Find Full Text PDF

Environmental stressors associated with human land and water-use activities have degraded many riparian ecosystems across the western United States. These stressors include (i) the widespread expansion of invasive plant species that displace native vegetation and exacerbate streamflow and sediment regime alteration; (ii) agricultural and urban development in valley bottoms that decouple streams and rivers from their floodplains and reduce instream wood recruitment and retention; and (iii) flow modification that reduces water quantity and quality, degrading aquatic habitats. Here we apply a novel drainage network model to assess the impacts of multiple stressors on reach-scale riparian condition across two large U.

View Article and Find Full Text PDF

Floodplain riparian ecosystems support unique vegetation communities and high biodiversity relative to terrestrial landscapes. Accordingly, estimating riparian ecosystem health across landscapes is critical for sustainable river management. However, methods that identify local riparian vegetation condition, an effective proxy for riparian health, have not been applied across broad, regional extents.

View Article and Find Full Text PDF

Stream classification provides a means to understand the diversity and distribution of channels and floodplains that occur across a landscape while identifying links between geomorphic form and process. Accordingly, stream classification is frequently employed as a watershed planning, management, and restoration tool. At the same time, there has been intense debate and criticism of particular frameworks, on the grounds that these frameworks classify stream reaches based largely on their physical form, rather than direct measurements of their component hydrogeomorphic processes.

View Article and Find Full Text PDF