Publications by authors named "Nate G. McDowell"

Article Synopsis
  • Nonstructural carbohydrates (NSC) in leaves relate to photosynthesis and respiration, influencing plant strategies.
  • A study involving 114 species showed that total NSC concentrations varied widely but generally didn't correlate with leaf gas exchange or economic traits.
  • However, species with higher photosynthesis had shorter NSC residence times, indicating that daily carbon gain is mainly exported rather than stored.
View Article and Find Full Text PDF

The impact of saltwater intrusion on coastal forests and farmland is typically understood as sea-level-driven inundation of a static terrestrial landscape, where ecosystems neither adapt to nor influence saltwater intrusion. Yet recent observations of tree mortality and reduced crop yields have inspired new process-based research into the hydrologic, geomorphic, biotic, and anthropogenic mechanisms involved. We review several negative feedbacks that help stabilize ecosystems in the early stages of salinity stress (e.

View Article and Find Full Text PDF

Stomatal closure during drought inhibits carbon uptake and may reduce a tree's defensive capacity. Limited carbon availability during drought may increase a tree's mortality risk, particularly if drought constrains trees' capacity to rapidly produce defenses during biotic attack. We parameterized a new model of conifer defense using physiological data on carbon reserves and chemical defenses before and after a simulated bark beetle attack in mature Pinus edulis under experimental drought.

View Article and Find Full Text PDF

As global change processes modify the extent and functions of terrestrial-aquatic interfaces, the variability of critical and dynamic transitional zones between wetlands and uplands increases. However, it is still unclear how fluctuating water levels at these dynamic boundaries alter groundwater biogeochemical cycling. Here, we used high-temporal resolution data along gradients from wetlands to uplands and during fluctuating water levels at freshwater coastal areas to capture spatiotemporal patterns of groundwater redox potential ().

View Article and Find Full Text PDF
Article Synopsis
  • Plant water uptake depth (WUD) is crucial for understanding how plants adapt to drought and varies significantly by biome rather than by plant type, influenced mainly by climate factors like precipitation seasonality.
  • A global review showed that maximum rooting depth often exceeds WUD, particularly in arid regions, highlighting the role of deep taproots as reserves, though they aren't the main source of water uptake.
  • Woody plants tend to quickly switch to deeper soil layers for water during dry periods, revealing a consistent adaptive strategy that could enhance future vegetation models despite existing knowledge gaps.
View Article and Find Full Text PDF

Non-structural carbohydrates (NSCs), as the labile fraction and dominant carbon currency, are essential mediators of plant adaptation to environments. However, whether and how NSC coordinates with plant economic strategy frameworks, particularly the well-recognized leaf economics spectrums (LES) and root economics space (RES), remains unclear. We examined the relationships between NSC and key plant economics traits in leaves and fine roots across 90 alpine coniferous populations on the Tibetan Plateau, China.

View Article and Find Full Text PDF
Article Synopsis
  • * Rising VPD interacts with soil moisture and drives drought conditions, impacting essential services like carbon capture, biodiversity, and agricultural productivity.
  • * The article reviews how VPD affects ecosystems and suggests management strategies to address these challenges, particularly in relation to water resources, agriculture, and wildfire management.
View Article and Find Full Text PDF

Frequent observations of higher mortality in larger trees than in smaller ones during droughts have sparked an increasing interest in size-dependent drought-induced mortality. However, the underlying physiological mechanisms are not well understood, with height-associated hydraulic constraints often being implied as the potential mechanism driving increased drought vulnerability. We performed a quantitative synthesis on how key traits that drive plant water and carbon economy change with tree height within species and assessed the implications that the different constraints and compensations may have on the interacting mechanisms (hydraulic failure, carbon starvation and/or biotic-agent attacks) affecting tree vulnerability to drought.

View Article and Find Full Text PDF

Shifts in the age or turnover time of non-structural carbohydrates (NSC) may underlie changes in tree growth under long-term increases in drought stress associated with climate change. But NSC responses to drought are challenging to quantify, due in part to large NSC stores in trees and subsequently long response times of NSC to climate variation. We measured NSC age (Δ C) along with a suite of ecophysiological metrics in Pinus edulis trees experiencing either extreme short-term drought (-90% ambient precipitation plot, 2020-2021) or a decade of severe drought (-45% plot, 2010-2021).

View Article and Find Full Text PDF

As global climate conditions continue to change, disturbance regimes and environmental drivers will continue to shift, impacting global vegetation dynamics. Following a period of vegetation greening, there has been a progressive increase in remotely sensed vegetation browning globally. Given the many societal benefits that forests provide, it is critical that we understand vegetation dynamic alterations.

View Article and Find Full Text PDF

Plant survival depends on a balance between carbon supply and demand. When carbon supply becomes limited, plants buffer demand by using stored carbohydrates (sugar and starch). During drought, NSCs (non-structural carbohydrates) may accumulate if growth stops before photosynthesis.

View Article and Find Full Text PDF

Canada's boreal forests, which occupy approximately 30% of boreal forests worldwide, play an important role in the global carbon budget. However, there is little quantitative information available regarding the spatiotemporal changes in the drought-induced tree mortality of Canada's boreal forests overall and their associated impacts on biomass carbon dynamics. Here, we develop spatiotemporally explicit estimates of drought-induced tree mortality and corresponding biomass carbon sink capacity changes in Canada's boreal forests from 1970 to 2020.

View Article and Find Full Text PDF

The frequency of extreme drought events has been rising worldwide, but due to its unpredictability, how plants will respond remains poorly understood. Here, we aimed to characterize how the hydraulics and photosynthesis of savanna plants respond to extreme drought, and tested whether they can subsequently recover photosynthesis after drought. There was an extreme drought in 2019 in Southwest (SW) China.

View Article and Find Full Text PDF

Within vascular plants, the partitioning of hydraulic resistance along the soil-to-leaf continuum affects transpiration and its response to environmental conditions. In trees, the fractional contribution of leaf hydraulic resistance (R ) to total soil-to-leaf hydraulic resistance (R ), or fR (=R /R ), is thought to be large, but this has not been tested comprehensively. We compiled a multibiome data set of fR using new and previously published measurements of pressure differences within trees in situ.

View Article and Find Full Text PDF

The representation of stomatal regulation of transpiration and CO assimilation is key to forecasting terrestrial ecosystem responses to global change. Given its importance in determining the relationship between forest productivity and climate, accurate and mechanistic model representation of the relationship between stomatal conductance (g ) and assimilation is crucial. We assess possible physiological and mechanistic controls on the estimation of the g (stomatal slope, inversely proportional to water use efficiency) and g (stomatal intercept) parameters, using diurnal gas exchange surveys and leaf-level response curves of six tropical broadleaf evergreen tree species.

View Article and Find Full Text PDF

Subtropical evergreen broadleaf forests (SEBF) are experiencing and expected to suffer more frequent and severe drought events. However, how the hydraulic traits directly link to the mortality and recovery of SEBF trees remains unclear. In this study, we conducted a drought-rewatering experiment on tree seedlings of five dominant species to investigate how the hydraulic traits were related to tree mortality and the resistance and recovery of photosynthesis (A) and transpiration (E) under different drought severities.

View Article and Find Full Text PDF

Forest ecosystems depend on their capacity to withstand and recover from natural and anthropogenic perturbations (that is, their resilience). Experimental evidence of sudden increases in tree mortality is raising concerns about variation in forest resilience, yet little is known about how it is evolving in response to climate change. Here we integrate satellite-based vegetation indices with machine learning to show how forest resilience, quantified in terms of critical slowing down indicators, has changed during the period 2000-2020.

View Article and Find Full Text PDF

Observations of woody plant mortality in coastal ecosystems are globally widespread, but the overarching processes and underlying mechanisms are poorly understood. This knowledge deficiency, combined with rapidly changing water levels, storm surges, atmospheric CO , and vapor pressure deficit, creates large predictive uncertainty regarding how coastal ecosystems will respond to global change. Here, we synthesize the literature on the mechanisms that underlie coastal woody-plant mortality, with the goal of producing a testable hypothesis framework.

View Article and Find Full Text PDF

Increasing seawater exposure is killing coastal trees globally, with expectations of accelerating mortality with rising sea levels. However, the impact of concomitant changes in atmospheric CO concentration, temperature, and vapor pressure deficit (VPD) on seawater-induced tree mortality is uncertain. We examined the mechanisms of seawater-induced mortality under varying climate scenarios using a photosynthetic gain and hydraulic cost optimization model validated against observations in a mature stand of Sitka spruce (Picea sitchensis) trees in the Pacific Northwest, USA, that were dying from recent seawater exposure.

View Article and Find Full Text PDF

Recent observations of elevated tree mortality following climate extremes, like heat and drought, raise concerns about climate change risks to global forest health. We currently lack both sufficient data and understanding to identify whether these observations represent a global trend toward increasing tree mortality. Here, we document events of sudden and unexpected elevated tree mortality following heat and drought events in ecosystems that previously were considered tolerant or not at risk of exposure.

View Article and Find Full Text PDF

Sensitivity of forest mortality to drought in carbon-dense tropical forests remains fraught with uncertainty, while extreme droughts are predicted to be more frequent and intense. Here, the potential of temporal autocorrelation of high-frequency variability in Landsat Enhanced Vegetation Index (EVI), an indicator of ecosystem resilience, to predict spatial and temporal variations of forest biomass mortality is evaluated against in situ census observations for 64 site-year combinations in Costa Rican tropical dry forests during the 2015 ENSO drought. Temporal autocorrelation, within the optimal moving window of 24 months, demonstrated robust predictive power for in situ mortality (leave-one-out cross-validation R  = 0.

View Article and Find Full Text PDF

Heat and drought affect plant chemical defenses and thereby plant susceptibility to pests and pathogens. Monoterpenes are of particular importance for conifers as they play critical roles in defense against bark beetles. To date, work seeking to understand the impacts of heat and drought on monoterpenes has primarily focused on young potted seedlings, leaving it unclear how older age classes that are more vulnerable to bark beetles might respond to stress.

View Article and Find Full Text PDF
Article Synopsis
  • Sea-level rise is severely impacting coastal forests, leading to increased tree mortality, particularly in Sitka spruce, due to salinity stress.
  • Observations reveal that as soil salinity rises, live foliage decreases and tree mortality rises, indicating a direct link between salinity and tree health.
  • The study highlights that the physiological decline in these trees is connected to hydraulic damage and ion accumulation, affecting their gas exchange and overall function.
View Article and Find Full Text PDF

Short-term plant respiration (R) increases exponentially with rising temperature, but drought could reduce respiration by reducing growth and metabolism. Acclimation may alter these responses. We examined if species with different drought responses would differ in foliar R response to +4.

View Article and Find Full Text PDF

Increasing severity and frequency of drought is predicted for large portions of the terrestrial biosphere, with major impacts already documented in wet tropical forests. Using a 4-year rainfall exclusion experiment in the Daintree Rainforest in northeast Australia, we examined canopy tree responses to reduced precipitation and soil water availability by quantifying seasonal changes in plant hydraulic and carbon traits for 11 tree species between control and drought treatments. Even with reduced soil volumetric water content in the upper 1 m of soil in the drought treatment, we found no significant difference between treatments for predawn and midday leaf water potential, photosynthesis, stomatal conductance, foliar stable carbon isotope composition, leaf mass per area, turgor loss point, xylem vessel anatomy, or leaf and stem nonstructural carbohydrates.

View Article and Find Full Text PDF