Med Devices (Auckl)
July 2024
Background: The assessment of cervical spine motion is critical for out-of-hospital patients who suffer traumatic spinal cord injuries, given the profound implications such injuries have on individual well-being and broader public health concerns. 3D Optoelectronic systems (BTS SmartDX) are standard devices for motion measurement, but their price, complexity, and size prevent them from being used outside of designated laboratories. This study was designed to evaluate the accuracy and reliability of an inertial measurement unit (IMU) in gauging cervical spine motion among healthy volunteers, using a 3D optoelectronic motion capture system as a reference.
View Article and Find Full Text PDFIntroduction: Inadequate spinal motion restriction in patients suffering from spinal injuries could lead to further neurological damage, ultimately worsening their prognosis. This study aimed to investigate the efficacy of long spinal boards (LSB), ske stretcher, and vacuum mattress for cervical spine immobilization during transportation of patients by measuring the angular motion of the cervical spine following lifting, transferring, and tilting.
Methods: We conducted an experimental study using a box of three randomizations and crossover designs without a washout period effect for the long spinal board, sked stretcher, and vacuum mattress.