Autosomal dominant variants in LRP10 have been identified in patients with Lewy body diseases (LBDs), including Parkinson's disease (PD), Parkinson's disease-dementia (PDD), and dementia with Lewy bodies (DLB). Nevertheless, there is little mechanistic insight into the role of LRP10 in disease pathogenesis. In the brains of control individuals, LRP10 is typically expressed in non-neuronal cells like astrocytes and neurovasculature, but in idiopathic and genetic cases of PD, PDD, and DLB, it is also present in α-synuclein-positive neuronal Lewy bodies.
View Article and Find Full Text PDFTreatment of prostate cancer (PCa) has changed considerably in the last decade due to the introduction of novel androgen receptor (AR)-targeted agents (ARTAs) for patients progressing on androgen deprivation therapy (ADT). Preclinical research however still relies heavily on AR-negative cell line models. In order to investigate potential differences in castration-resistant PCa (CRPC) growth, we set out to create a comprehensive panel of ARTA-progressive models from 4 androgen-responsive AR wild-type PCa cell lines and analyzed its androgen response as opposed to its ADT-progressive counterparts.
View Article and Find Full Text PDFIntroduction: Extracellular vesicles (EVs) and their cargo may provide promising biomarkers for the early detection of pancreatic ductal adenocarcinoma (PDAC). Although blood-borne EVs are most frequently studied as cancer biomarkers, pancreatic juice (PJ) may represent a better biomarker source because it is in close contact with the ductal cells from which PDAC arises. It is, as yet, unknown whether PDAC results in a distinct type or increased number of particles in PJ and whether this has diagnostic value.
View Article and Find Full Text PDFBackground: Extracellular vesicles (EVs) are actively secreted by cells into body fluids and contain nucleic acids of the cells they originate from. The goal of this study was to detect circulating tumor-derived EVs (ctEVs) by mutant mRNA transcripts (EV-RNA) in plasma of patients with solid cancers and compare the occurrence of ctEVs with circulating tumor DNA (ctDNA) in cell-free DNA (cfDNA).
Methods: For this purpose, blood from 20 patients and 15 healthy blood donors (HBDs) was collected in different preservation tubes (EDTA, BCT, CellSave) and processed into plasma within 24 h from venipuncture.
Phosphodiesterase 4D7 was recently shown to be specifically over-expressed in localized prostate cancer, raising the question as to which regulatory mechanisms are involved and whether other isoforms of this gene family (PDE4D) are affected under the same conditions.We investigated PDE4D isoform composition in prostatic tissues using a total of seven independent expression datasets and also included data on DNA methylation, copy number and AR and ERG binding in PDE4D promoters to gain insight into their effect on PDE4D transcription.We show that expression of PDE4D isoforms is consistently altered in primary human prostate cancer compared to benign tissue, with PDE4D7 being up-regulated while PDE4D5 and PDE4D9 are down-regulated.
View Article and Find Full Text PDFSmall nucleolar RNAs (snoRNAs) are dynamically regulated in different tissues and affected in disease. SnoRNAs are processed further to stable smaller RNAs. We sequenced the small RNA transcriptome of prostate cancer (PCa) at different PCa stages and generated a quantified catalogue of 3927 small non-coding RNAs (sncRNAs) detected in normal and malignant prostate tissue.
View Article and Find Full Text PDFCurrent prostate cancer (PCa) biomarkers such as PSA are not optimal in distinguishing cancer from benign prostate diseases and predicting disease outcome. To discover additional biomarkers, we investigated PCa-specific expression of novel unannotated transcripts. Using the unique probe design of Affymetrix Human Exon Arrays, we identified 334 candidates (EPCATs), of which 15 were validated by RT-PCR.
View Article and Find Full Text PDFBackground: Despite an initial response to hormonal therapy, patients with advanced prostate cancer (PC) almost always progress to castration-resistant disease (CRPC). Although serum testosterone (T) is reduced by androgen deprivation therapy, intratumoral T levels in CRPC are comparable to those in prostate tissue of eugonadal men. These levels could originate from intratumoral conversion of adrenal androgens and/or from de novo steroid synthesis.
View Article and Find Full Text PDFLocal androgen synthesis in prostate cancer (PC) may contribute to the development of castration-resistant PC (CRPC), but pathways controlling intratumoral steroidogenic enzyme expression in PC are unknown. We investigated the effects of activin, a factor involved in the regulation of PC growth and steroidogenic enzyme expression in other steroidogenic tissues, on intratumoral steroidogenesis in PC. Activin A effects and regulation of the activin-signaling pathway molecules were studied in the PC cell lines LNCaP, VCaP, and PC-3 and in 13 individual PC xenograft models.
View Article and Find Full Text PDFBackground: Given the fact that prostate cancer incidence will increase in the coming years, new prognostic biomarkers are needed with regard to the biological aggressiveness of the prostate cancer diagnosed. Since cytokines have been associated with the biology of cancer and its prognosis, we determined whether transforming growth factor beta 1 (TGFβ1), interleukin-7 (IL-7) receptor and IL-7 levels add additional prognostic information with regard to prostate cancer-specific survival.
Materials And Methods: Retrospective survival analysis of forty-four prostate cancer patients, that underwent radical prostatectomy, was performed (1989-2001).
Background: Prostate epithelial cells depend on androgens for survival and function. In (early) prostate cancer (PCa) androgens also regulate tumor growth, which is exploited by hormonal therapies in metastatic disease. The aim of the present study was to characterize the androgen receptor (AR) response in hormonal therapy-resistant PC346 cells and identify potential disease markers.
View Article and Find Full Text PDFBackground: Prostate cancer is initially dependent on androgens for survival and growth, making hormonal therapy the cornerstone treatment for late-stage tumors. However, despite initial remission, the cancer will inevitably recur. The present study was designed to investigate how androgen-dependent prostate cancer cells eventually survive and resume growth under androgen-deprived and antiandrogen supplemented conditions.
View Article and Find Full Text PDFAndrogen-deprivation therapy for prostate cancer (PC) eventually leads to castration-resistant PC (CRPC). Intratumoral androgen production might contribute to tumor progression despite suppressed serum androgen concentrations. In the present study, we investigated whether PC or CRPC tissue may be capable of intratumoral androgen synthesis.
View Article and Find Full Text PDFBackground: Forkhead box 2 (FOXF2) is a member of the large family of forkhead transcription factors and its expression pattern suggests a role in prostate cancer development. FOXF2 expression is stroma-specific and higher expressed in the prostate transition zone than the prostate peripheral zone. Moreover, expression of FOXF2 is decreased in prostate cancer.
View Article and Find Full Text PDFOBJECTIVE To assess the expression of forkhead transcription factors (FOX) in normal prostate and prostate diseases, as since the first FOX was identified, its family members have been implicated in a variety of cellular processes, including embryonic development and disease. MATERIAL AND METHODS We analysed a set of 12 different FOX genes by quantitative reverse transcription-polymerase chain reaction in prostate zones, prostate cancer, lymph node metastases, benign prostatic hyperplasia (BPH), xenografts and several prostate cell lines. RESULTS There were striking differences among the expression of various FOX family members; most prominent were the high expression of FOXF1 and FOXF2 in the normal prostate transition zone and BPH, and their decreased expression in prostate cancer.
View Article and Find Full Text PDFIn this study, we describe the properties of novel ETV1 fusion genes, encoding N-truncated ETV1 (dETV1), and of full-length ETV1, overexpressed in clinical prostate cancer. We detected overexpression of novel ETV1 fusion genes or of full-length ETV1 in 10% of prostate cancers. Novel ETV1 fusion partners included FOXP1, an EST (EST14), and an endogenous retroviral repeat sequence (HERVK17).
View Article and Find Full Text PDFRecently, fusion of ERG to the androgen-regulated, prostate-specific TMPRSS2 gene has been identified as the most frequent genetic alteration in prostate cancer. At low frequency, TMPRSS2-ETV1 and TMPRSS2-ETV4 fusion genes have been described. In this study, we report two novel ETV4 fusion genes in prostate cancer: KLK2-ETV4 and CANT1-ETV4.
View Article and Find Full Text PDFThe present work focused on the potential involvement of selective adaptations of the androgen receptor pathway in the initiation and progression of prostate cancer. We defined the androgen receptor pathway by selecting 200 genes that were androgen responsive in prostate cancer cell lines and/or xenografts. This androgen receptor pathway gene signature was then used for profiling prostate cancer xenografts and patient-derived samples.
View Article and Find Full Text PDFBackground: The insulin-like growth factor (IGF) system is important for pituitary development and control, with each member of this axis having a specific temporal and spatial expression. Because IGF-binding protein-5 (IGFBP-5) is one of the most highly expressed binding proteins in the anterior pituitary (AP), it might be of special importance in this gland.
Objective: The purpose of this study was to examine the temporal relationship between the expression of the IGFs and IGFBP-5 in the AP during postnatal development.