Publications by authors named "Natasha Vinod"

Triple-negative breast cancer (TNBC) is notoriously difficult to treat due to the lack of targetable receptors and sometimes poor response to chemotherapy. The transforming growth factor beta (TGFβ) family of proteins and their receptors (TGFRs) are highly expressed in TNBC and implicated in chemotherapy-induced cancer stemness. Here, we evaluated combination treatments using experimental TGFR inhibitors (TGFβi), SB525334 (SB), and LY2109761 (LY) with paclitaxel (PTX) chemotherapy.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) is notoriously difficult to treat due to the lack of targetable receptors and sometimes poor response to chemotherapy. The transforming growth factor-beta (TGFβ) family of proteins and their receptors (TGFR) are highly expressed in TNBC and implicated in chemotherapy-induced cancer stemness. Here we evaluated combination treatments using experimental TGFR inhibitors (TGFβi), SB525334 (SB), and LY2109761 (LY) with Paclitaxel (PTX) chemotherapy.

View Article and Find Full Text PDF

Posttransplantation cyclophosphamide (PTCy), given on days +3 and +4, reduces graft-versus-host disease (GVHD) after allogeneic hematopoietic cell transplantation (HCT), but its immunologic underpinnings are not fully understood. In a T-cell-replete, major histocompatibility complex-haploidentical murine HCT model (B6C3F1→B6D2F1), we previously showed that PTCy rapidly induces suppressive mechanisms sufficient to prevent GVHD induction by non-PTCy-exposed donor splenocytes infused on day +5. Here, in PTCy-treated mice, we found that depleting Foxp3+ regulatory T cells (Tregs) in the initial graft but not the day +5 splenocytes did not worsen GVHD, yet depleting Tregs in both cellular compartments led to fatal GVHD induced by the day +5 splenocytes.

View Article and Find Full Text PDF

The in vivo fate of nanoformulated drugs is governed by the physicochemical properties of the drug and the functionality of nanocarriers. Nanoformulations such as polymeric micelles, which physically encapsulate poorly soluble drugs, release their payload into the bloodstream during systemic circulation. This results in three distinct fractions of the drug-nanomedicine: encapsulated, protein-bound, and free drug.

View Article and Find Full Text PDF

Many new drug development candidates are highly lipophilic compounds with low water solubility. This constitutes a formidable challenge for the use of such compounds for cancer therapy, where high doses and intravenous injections are needed ( Di , 2012 ). Here, we present a poly(2-oxazoline) polymer (POx)-based nanoformulation strategy to solubilize and deliver hydrophobic drugs.

View Article and Find Full Text PDF

Tumor xenograft models developed by transplanting human tissues or cells into immune-deficient mice are widely used to study human cancer response to drug candidates. However, immune-deficient mice are unfit for investigating the effect of immunotherapeutic agents on the host immune response to cancer (Morgan, 2012). Here, we describe the preparation of an orthotopic, syngeneic model of lung adenocarcinoma (LUAD), a subtype of non-small cell lung cancer (NSCLC), to study the antitumor effect of chemo and immunotherapeutic agents in an immune-competent animal.

View Article and Find Full Text PDF

About 40% of patients with non-small cell lung cancer (NSCLC) have stage IV cancer at the time of diagnosis. The only viable treatment options for metastatic disease are systemic chemotherapy and immunotherapy. Nonetheless, chemoresistance remains a major cause of chemotherapy failure.

View Article and Find Full Text PDF

There is an unmet medical need in the area of Parkinson's disease (PD) to develop novel therapeutic approaches that can stop and reverse the underlying mechanisms responsible for the neuronal death. We previously demonstrated that systemically administered autologous macrophages transfected ex vivo to produce glial cell line-derived neurotrophic factor (GDNF) readily migrate to the mouse brain with acute toxin-induced neuroinflammation and ameliorate neurodegeneration in PD mouse models. We hypothesized that the high level of cytokines due to inflammatory process attracted GDNF-expressing macrophages and ensured targeted drug delivery to the PD brain.

View Article and Find Full Text PDF

Many drug candidates fail therapeutic development because of poor aqueous solubility. We have conceived a computer-aided strategy to enable polymeric micelle-based delivery of poorly soluble drugs. We built models predicting both drug loading efficiency (LE) and loading capacity (LC) using novel descriptors of drug-polymer complexes.

View Article and Find Full Text PDF

Concurrent delivery of multiple drugs using nanoformulations can improve outcomes of cancer treatments. Here we demonstrate that this approach can be used to improve the paclitaxel (PTX) and alkylated cisplatin prodrug combination therapy of ovarian and breast cancer. The drugs are co-loaded in the polymeric micelle system based on amphiphilic block copolymer poly(2-methyl-2-oxazoline-block-2-butyl-2-oxazoline-block-2-methyl-2-oxazoline) (P(MeOx-b-BuOx-b-MeOx).

View Article and Find Full Text PDF

Brain-derived neurotrophic factor (BDNF) is identified as a potent neuroprotective and neuroregenerative agent for many neurological diseases. Regrettably, its delivery to the brain is hampered by poor serum stability and rapid brain clearance. Here, a novel nanoformulation is reported composed of a bio-compatible polymer, poly(ethylene glycol)--poly(L-glutamic acid) (PEG-PLE), that hosts the BDNF molecule in a nanoscale complex, termed here Nano-BDNF.

View Article and Find Full Text PDF