Unlabelled: Enteric pathogens such as serovar Typhimurium experience spatial and temporal changes to the metabolic landscape throughout infection. Host reactive oxygen and nitrogen species non-enzymatically convert monosaccharides to alpha hydroxy acids, including L-tartrate. utilizes L-tartrate early during infection to support fumarate respiration, while L-tartrate utilization ceases at later time points due to the increased availability of exogenous electron acceptors such as tetrathionate, nitrate, and oxygen.
View Article and Find Full Text PDFEnteric pathogens such as serovar Typhimurium experience spatial and temporal changes to the metabolic landscape throughout infection. Host reactive oxygen and nitrogen species non-enzymatically convert monosaccharides to alpha hydroxy acids, including L-tartrate. utilizes L-tartrate early during infection to support fumarate respiration, while L-tartrate utilization ceases at later time points due to the increased availability of exogenous electron acceptors such as tetrathionate, nitrate, and oxygen.
View Article and Find Full Text PDFThe type III secretion system (T3SS) is an appendage used by many bacterial pathogens, such as pathogenic Yersinia, to subvert host defenses. However, because the T3SS is energetically costly and immunogenic, it must be tightly regulated in response to environmental cues to enable survival in the host. Here we show that expression of the Yersinia Ysc T3SS master regulator, LcrF, is orchestrated by the opposing activities of the repressive H-NS/YmoA histone-like protein complex and induction by the iron and oxygen-regulated IscR transcription factor.
View Article and Find Full Text PDF