Publications by authors named "Natasha Stepanova"

As lineages become separated in time, they are expected to accumulate mutational (or developmental-genetic) differences that influence the macroevolutionary trajectories of those lineages even under similar environmental conditions. Here, we compare the dynamics of phenotypic evolution in radiations of scincid lizards from Australia and Madagascar that are separated by more than 100 million years of independent evolution and show rampant phenotypic parallelism. We collected linear measurements of the skull, limbs, and limb girdles from micro-CT scans of 94 Australian and 29 Malagasy species.

View Article and Find Full Text PDF

Snakes and lizards (Squamata) represent a third of terrestrial vertebrates and exhibit spectacular innovations in locomotion, feeding, and sensory processing. However, the evolutionary drivers of this radiation remain poorly known. We infer potential causes and ultimate consequences of squamate macroevolution by combining individual-based natural history observations (>60,000 animals) with a comprehensive time-calibrated phylogeny that we anchored with genomic data (5400 loci) from 1018 species.

View Article and Find Full Text PDF

Background: Skulls serve many functions and as a result, are subject to many different evolutionary pressures. In squamates, many fossorial species occupy a unique region of skull morphospace, showing convergence across families, due to modifications related to head-first burrowing. As different substrates have variable physical properties, particular skull shapes may offer selective advantages in certain substrates.

View Article and Find Full Text PDF

Anurans (frogs and toads) have a unique pelvic and hind limb skeleton among tetrapods. Although their distinct body plan is primarily associated with saltation, anuran species vary in their primary locomotor mode (e.g.

View Article and Find Full Text PDF

Tetrapod limbs have been used as a model system to investigate how selective pressures and constraints shape morphological evolution. Anurans have had many independent transitions to various microhabitats, allowing us to dissect how these factors influence limb morphology. Furthermore, anurans provide a unique system to test the generality of developmental constraints proposed in mammals, namely that later-developing limb bones are under less constraint and show more variation.

View Article and Find Full Text PDF